
Avoid Development
Hell to Realize
Software ROI

White Paper

www.6WIND.com

Copyright © 2020 6WIND Avoid Development Hell | 2
www.6WIND.com

Executive Summary
With new emerging technology recruitments like 5G, IoT, SD-WAN, the network
equipment manufacturers and telecom equipment providers are investing in building
and designing new networking products.

With the expansion of data consumption and the
need for high performance and flexibility of
deployments driven by the new emerging technol-
ogy requirements (5G, IoT, SD-WAN), more and
more network equipment manufacturers and
telecom equipment providers are investing in
building and designing new networking products.

The new networking products are capable of
leveraging, in the most efficient way, the compu-
tation performance provided by new available
generic hardware platforms and the deployment
options used to deliver the right level of perfor-
mance through public clouds infrastructures.

They do this by deploying virtualized services
closest to the end customers (containerizations).

When building a new networking product, what-
ever the complexity, manufacturers have always
the choice to build or buy. Building comes usually
with a lot of development considerations, not only
costs but also time to market, risk mitigation, and
maintainability. Before deciding to develop
stacks internally or use off-the-shelf solutions, it is
very important to understand this complexity.

In this white paper, we will highlight the
challenges a build vs buy decision could involve
when building a high-performance networking
equipment.

Copyright © 2020 6WIND Avoid Development Hell | 3
www.6WIND.com

Introduction
In this white paper, we will discuss the challenges a build vs buy decision involves

The new generation of servers based on
increasingly powerful multicore processors and
high-speed ethernet technologies (10G, 40G, and
100G) enables the development of cost-effective
network and telecom equipment using generic
bare metal and virtualized servers.

Standard OS networking stacks have not been
designed to extract the required level of network
performance from this new generation of
hardware platforms to compete with legacy
architectures. Developing and maintaining a
scalable networking stack optimized for multicore
hardware architectures is a very complex task.

Multicore processor vendors provide a software
environment to develop network applications. This
software environment includesSoftware
Development Kits (SDKs) needed to make the best
use of hardware resources for receiving and
transmitting packets. For instance, DPDK (Data Plane
Development Kit)a set of libraries and drivers for fast
packet processing, provides a programming
framework for Intel, ARM, and AMD processors and
enables faster development of high speed data
packet networking applications.

Software Development Kits (SDKs) such as DPDK are
mandatory to drive in the most efficient way the best
performance from the hardware, but it is important
to note that they are not a networking stack.

Copyright © 2020 6WIND Avoid Development Hell | 4
www.6WIND.com

What is DPDK?
Data Plane Development Kit (DPDK), the de-facto framework that provides
standardized services for high performance packet processing.

In 2013, 6WIND launched thedpdk.org(Data Plane
Development Kit) open source project before
successfully transferring it to the Linux Founda-
tionin 2017. Initially designed for Intel architec-
tures, DPDK is now the de facto framework to
provide standardized services for high perfor-
mance packet processing.

The DPDK framework creates a set of libraries for
specific hardware/software environments through
the creation of an Environment Abstraction Layer
(EAL). The EAL, part of the core modules, hides the
environmental specifics and provides a standard
programming interface to libraries, available
hardware accelerators and other hardware and
operating system (Linux, FreeBSD) elements. For
instance, the EAL provides the framework to
support Linux, FreeBSD, Intel IA (32- or 64-bit),
ARM, AMD, etc. It also provides additional services
including boot support, PCIe bus access, trace and
debug functions and alarm operations.

The DPDK implements a low overhead
run-to-completion model for fast data plane
performance and accesses devices via polling to

eliminate the performance overhead of interrupt
processing. Different poll mode drivers C(PMDs),
native and virtual, are available to handle major HW
NICs (Intel, Mellanox, Broadcom, etc.) and virtual
NICs (Virtio, VMXNET3, VHOST, etc.). Besides these
modules, DPDK provides also dedicated modules for
offloading security functions to HW crypto engines
(QAT, AES-NI. etc.), classification (ACL, HASH, etc.),
QoS (Meter, Scheduler) and others extensions.

Even though DPDK is mandatory to receive and
transmit packets at a very high speed, it does not
include any implementation of network protocols. It
only provides basic examples to explain how
networking software can use the DPDK low-level
services.

A networking stack of a standard operating system
cannot be reused on top of DPDK because its internal
architecture has not been designed to scale on a
large number of cores. So, network software develop-
ers have to design andimplement from the ground up
a new networking stack on top of DPDK and integrate
this stack with the software environment and the
management framework.

Copyright © 2020 6WIND Avoid Development Hell | 5
www.6WIND.com

High Performance Networking Stack Architecture
Design
In this section we will review the challenges to be solved to develop this kind of software.

Required Software Skills

Developing high performance data plane software
requires very specific networking and software skills.
Developers must have a skill set combining
embedded software background, expertise for a large
number of network protocols and hardware -
software integration experience. Although having
practice in embedded Linux software developers
need to have an in-depth understanding of how the
processor works internally (not only how it can be
programmed) combined with PCIe, firmware and
Ethernet NIC skills. Thus, software team managers
should not underestimate the learning curve for a
development team to reach a good level of
productivity.

At 6WIND, we train teams of embedded software
engineers to develop data plane software on top of
DPDK and our experience shows an experienced
engineer needs between 3 to 6 months to be fully
productive.

Software Design

To achieve the highest performance, developers have
to use specialized techniques because high
performance data plane software is very specific.
Reusing available networking stacks is impossible
because their architecture has not been designed to
scale on multicore processors:

Specific programming models like
run-to-completion leveraging multi-core
architectures must be well understood.
Packet flow processes must be designed and
optimized to minimize the number of processor
cycles as Layer 3 (IP) performance and latency
are directly related to it.
Layer 3 fragmentation is an example to
illustrate potential design problems. A first
design of an IP stack can be done without
fragmentation and it will work in 99% of the
use cases. However, adding fragmentation to
have a fully compliant IP stack will cause many
problems such as hardware checksum
offloading. IP fragments

must be memorized and reordered instead of
copying fragments into a linear area where all
bytes fit. Multi-segment packets must be
correctly implemented. Fragmentation will also
have impacts in the higher layers. TCP is now
getting horribly complex as you must reassem-
ble IP fragments and TCP segments.

•

Modern software stacks have also to be IPv6
compliant. Unfortunately, IPv6 is a completely
different software stack compared to IPv4
(fragmentation, automatic address acquisition,
end-to-end and hop by hop options…) and
requires specific optimizations.
Buffer copies and locks are restricted to the very
minimum and with the most efficient scheme
(simple locks, read-write locks or
Read-Copy-Update), or implementation method
(transactional memory). For instance, table
updates must be implemented to avoid any lock
that would freeze the system.
Layer 4 protocol (TCP/UDP) performance and
latency are directly related to an efficient memory
utilization and locking scheme because for each
packet a socket has to be found and updated.
High performance implies to manage a large
number of network objects (interfaces, routing
tables, filtering tables, security tunnels and
associations…); efficient algorithms to parse large
tables must be implemented.
Hardware / software integration is critical to
obtain high performance: location of data, use of
caches, use of threads, communication between
processors, and interface with PMD network
drivers… must be optimized and require an
in-depth knowledge of hardware capabilities.
Adding protocols may have side effects and need
a complete system test and validation.
Stressing high performance software requires
developing specific tools and environments to
test software at different steps of the
development.
The validation of a new networking stack in
carrier networks is a very long and costly process
including proven interoperability.

•

•

•

•

•

•

•

•

•

•

Copyright © 2020 6WIND Avoid Development Hell | 6
www.6WIND.com

Impact on Software Environment

It's very important to design data plane protocols
to avoid any impact on the software environment
including control plane and management
protocols, the Linux operating system, the
hypervisor and DPDK. If the right architecture
design rules are not well defined, the following
major problems have to be solved:

As a result, specifying, developing and testing
high performance embedded data plane
protocols is a very low-productivity software task
even for skilled engineers.

Furthermore, as there are many technical
challenges to solve when building up a
networking stack, it's almost impossible to define
the final software architecture without having
proof of concept steps to select the right design
options. Skipping this learning phase under the
pressure of a tight development schedule
significantly increases risks and may lead to
major development slippage if software has to be
partly or totally redesigned.

As new data plane software is developed, it
requires APIs to be configured and monitored
by both control plane (routing, security…)
and management plane including NETCONF,
SNMP, sFlow, NetFlow, etc., both running in
userland. These APIs exist in a standard Linux
environment and reusing them for the new
data plane software avoids any modification
to the control / management planes,
otherwise control / management software
has to be rewritten / revalidated and support
may be broken.

•

Data plane interacts with a large number of
software components (Linux, KVM, QEMU,
OpenStack…) that come from the open source
community. If the data plane software requires
patches to work with its environment, these
patches must be proposed to the community.
This process is unpredictable and requires
allocating dedicated engineering resources that
are familiar with the open source process.
Sometimes patches that can be considered as
too specific may not be accepted. In this case,
these patches have to be ported, sometimes
redesigned, and revalidated with each new
version of the software and each version of the
open source components.
Unclear boundaries between the data plane
software and open source environment may
lead to potential issues with open source
licenses like GPL. These issues can only be
avoided by using a strict company-level
process.
Patching an environment that is supported by a
commercial open source distribution provider
generally terminates support contracts.

Even if the data plane software is designed to avoid
any impact on its software environment, it must be
validated with new versions of its environment.
Commercially supported open source distributions
can be used. In that case, data plane software will
have to be validated with typical revision cycles of
commercial releases.

Direct use of open source distributions leads to
specific problems. Open source projects generally
add new features to the latest released version. For
instance, dpdk.org releases 3 or 4 versions a year. An
internal process to use and support releases has to
be defined to either always use the latest version or
keep previous versions with some backports if
features only available in new versions are required.
Fixes done internally have to be provided to the
community to be integrated in new versions to avoid
additional backports.

This multiplies the maintenance effort to support the
products in the field and those under development,
which will likely use different open source
distribution versions. The manpower tasked to this
effort increases over time as more versions are
deployed.

•

•

•

Copyright © 2020 6WIND Avoid Development Hell | 7
www.6WIND.com

Technology Evolutions

Multicore and NIC technologies evolve very fast,
sometimes faster than their software development.
Furthermore, deployment environments are moving
towards full cloudification considerations (public
clouds, VMs, Containers).

To benefit from the latest technology improvements
that increase data plane software performance,
packet processing software must be developed to be
easily reused on different hardware architectures and
different deployment environments. Clean hardware
networking abstraction layers to fully leverage
processor architectures and hardware accelerators
have to be defined using standard packet handling
services. Otherwise, software redesign and porting
will be required to use different hardware
architectures for a complete range of products and
leverage technology improvements.

Networking and telco markets have fierce
competition. Marketing teams want to differentiate
products and drive for fast innovation. So, products
must be enhanced quickly. For all these reasons, data
plane software must evolve often with new features
and protocols and requires a complete development
and validation process. Of course, if the existing
software has not been well designed, integrating new
data plane features may have a significant impact in
terms of development costs and time.

Other considerations

Like any other network software, the correct
implementation of data plane protocols has to be
checked through intensive integration,
interoperability and vulnerability tests requiring high
performance and very expensive testing equipment
because data plane protocols process packets at a
very high speed. Validation in real networks can be a
long and expensive process for new network software
implementations.

High Performance Networking Stack
Example: “IPsec Security Gateway”

To illustrate all these different challenges, take the
example of a security gateway. IPsec, for data plane,
and IKE, for control plane, are the core protocols of a

High performance security gateways have to
manage a very large number of security policies and
associations. Standard implementations of IPsec
and IKE cannot scale to address this requirement.
Keeping standard interfaces between IKE and IPsec
is a key requirement to avoid redesigning the IKE
control plane protocol.

Finally, managing security policies is a very
important feature and high-level configuration tools
are required to automate policy configuration and
interfaces with key or certificate management
systems.

a security gateway. However, the equipment has to
implement a large number of additional Layer 2 and
Layer 3 protocols to be integrated in complete
network architecture. All these protocols have to be
optimized, otherwise the overall performance of the
equipment will be very poor.

IPsec itself is a very complex protocol with a large
number of options including support for IPv4, IPv6
and many encapsulation mechanisms. IPsec crypto
algorithms consume a lot of processing bandwidth
that may require hardware accelerators to offload
the main processor. Keeping a common interface to
use either software crypto libraries or hardware
accelerators is a very important requirement to
develop a range of products.

Copyright © 2020 6WIND Avoid Development Hell | 8
www.6WIND.com

A complete IPsec security gateway based on Intel /
DPDK architecture should at least implement the
following protocols:

DPDK

Data Plane Protocols

DPDK with required PMD NIC drivers
Crypto software libraries and crypto accelerator
support (Intel Cave Creek, Cavium Nitrox…)
Virtio guest DPDK driver if the security gateway
runs in a Virtual Machine

•

VLAN, VxLAN
Link Aggregation
Ethernet Bridge
IPv4 / IPv6 Forwarding
IPsec v4 and IPsec v6
IPv4 / IPv6 Reassembly
IPv4 / IPv6 Filtering
Virtual Routing and Forwarding
Tunneling (IP in IP, GRE…)
QoS
Flow Inspection / Packet Capture (for debugging)

•
•
•
•
•
•
•
•
•
•
•

•

•

Control Plane Protocols

Management

High availability

Synchronization between Linux and data plane
protocols to easily reuse standard control plane
protocols
Routing including virtual routing
IKE
LACP

•

CLI, NETCONF, SNMP, Sflow, KPIs, …
Interface with key or certificate management
systems

Active/backup redundancy with Hot Standby
capabilities:
 - Synchronization of Security Associations
 - Synchronization of Sequence Numbers

•
•

•

•
•

•

Optimized software architecture that linearly
scales over a large number of cores located in a
single processor or in different processors to
deliver unequalled packet processing
performance.

Complete modular Layer 2 – Layer 4
networking stack optimizing all IP protocols;
customers can purchase the exact list of
modules required for their applications and add
new modules to provide more services in
further steps.

Transparent solution for the software
environment. Running Linux and 6WINDGate is
identical to running Linux. 6WINDGate's fast
path is completely hidden to applications
thanks to its continuous synchronization with
Linux. So, Linux applications, including
management frameworks, work unmodified
with 6WINDGate. Using 6WINDGate doesn't
require any patching, in the Linux kernel, the
hypervisor, or management framework.
Customers can keep their standard commercial
support agreements in place.

Advanced Management and Monitoring with
APIs. 6WINDGate provides both traditional,
CLI-based management and management
based on YANG and NETCONF APIs for
integration with higher level orchestrators and
management frameworks. For monitoring,
besides the traditional SNMP and syslog
mechanisms, data plane sampling through
sFlow, and streaming telemetry with time series
data base and graphical analytics are
supported.

•

•

•

•

Copyright © 2020 6WIND Avoid Development Hell | 9
www.6WIND.com

Comparing In-house vs. 6WINDGate-based
Development
In this section we will review the challenges to be solved to develop this kind of software.

6WINDGate is a fast path–based data plane network-
ing stack that has been specifically designed to
extract the highest performance for packet process-
ing on multicore platforms. Beyond pure perfor-
mance, 6WINDGate includes all the required features
to provide a long-term, ready-to-use solution to
minimize development costs and reduce time to
market:

For the complete set of data plane protocols listed in
the previous section that are required for a security
gateway, the estimated in-house development
workload, staring from ground-up, to release a first
version of the security gateway equipment based on
a generic bare-metal Intel server using DPDK is
estimated at 200 man months (8 engineers during a
period of 25 months). This estimation assumes the
work is done by a team of skilled networking software
developers (refer to “Development Requirements
Task List” section) and does not include any skills
ramp up period nor any additional workload linked to
possible software redesign needs.

In comparison the estimated workload to integrate
6WINDGate for a first version of the same equipment
is 15man months (3 engineers during 5 months)
and requires more standard software integration
skills.

Availability on all market-leading multicore
platforms. More than 90% of the 6WINDGate
dataplane software is written in standard C
code and can be reused as is on the networking
hardware abstraction layer developed by
6WIND on top of the processor SDKs. The 6WIND
DPDK commercial distribution also supports a
large number of NICs and crypto accelerators
from several providers. Using 6WINDGate
guarantees fast porting on new hardware
architectures and minimizes support costs in
case a customer uses 6WINDGate on different
hardware platforms to develop a complete
range of products.

6WINDGate is a proven solution. Since its first
shipment in 2007, it has been deployed in
production in critical carrier network
equipment and has been in operation for years
showing its quality, interoperability and
scalability.

•

•

Copyright © 2020 6WIND Avoid Development Hell | 10
www.6WIND.com

The following diagram details the engineering
workload for the two options in the different
phases of the project. It’s assumed the in-house
development uses third party or in-house
control plane protocols (including management)
that are not to be redeveloped but only
integrated with the high-performance data
plane. Networking tests include performance
and interoperability tests. Maintenance,
validation with evolutions of software
environment (DPDK, Linux...) are not included.

6WINDGate also delivers long-term benefits including:

Development Requirements Task List

Build Team
Develop optimized data protocols
Bare metal and virtualization support
Linux Integration
Monitoring (SNMP, KPIs, NetFlow)
Create Control Plane API
Integration with Control Plane and
Management Plane
CLI, XML, key/certificate management
Testing (Performance, vulnerability)
Validation in real networks
Maintenance
Validation with new versions of the
software environment
Development of additional features to
differentiate products
Portability

•

Availability on different hardware platforms to
avoid vendor lock-in
Virtualization ready solution to accelerate the
evolution to virtualized appliances for deploy-
ments in private and public clouds based on
either KVM, VMWare, AWS or Azure.
Support of containers deployments (docker,
Kubernetes)
Extensible Netconf/Yang based Management
plane (CLI, Yang models, KPIs).
Simple development of added value features
thanks to Linux transparency
Extensibility with new protocols when required
Validation with major software distributions
(Linux, hypervisor, OpenStack)
6WIND roadmap

•

•

•

•

•

•
•

•

•
•
•
•
•
•

•
•
•
•
•

•

•

Americas | EMEA | APAC

Conclusion
Developing high performance embedded data
plane software requires very specific networking
and software skills. Specifying, developing and
testing this kind of software is a very
low-productivity software task.

Considering the extreme complexity of the
software to be developed for the current
generation of networking and telecom equipment,
product line and software team managers should
carefully analyze the potential risk as
underestimating the complexity may lead to
software development hell, unexpected extra
development costs and significant delivery delays.

6WINDGate is the result of more than 350
man-years of software R&D and deep expertise in
networking.

Using 6WINDGate significantly reduces develop-
ment risk to keep develop costs under control,
ship products on time and quickly generate
revenues. 6WINDGate's architecture is a valuable
long-term investment to easily benefit from the
latest improvements of processors, NIC technolo-
gies, network protocols and multi-environments
deployment capabilities (bare metal, VMs and
docker containers).

www.6WIND.com

