

Challenges

- Ultra-Low Latency Services
- Centralized UPF Bottlenecks
- Edge Compute Requirements
- Energy & ESG Compliance

Benefits

- Monetize Edge AI
- ► Lower CAPEX & OPEX
- Accelerate Time-to-Market
- Sustainability Gains
- Vendor Independence

Conclusion

- Push intelligence and packet processing to the edge
- Support demanding Al-native applications
- Reduce costs, latency, and carbon footprint

6WIND AI-RAN Solution Brief

Accelerating Edge Intelligence with Distributed UPF and **NVIDIA Grace Hopper**

Executive Summary

AI-RAN is redefining the Radio Access Network by embedding Artificial Intelligence directly into the RAN architecture. This enables real-time inferencing, context-aware automation, and edge-native services with ultralow latency.

In partnership with NVIDIA, 6WIND delivers a Distributed User Plane Function (dUPF) optimized for the NVIDIA Grace Hopper Superchip — converging telecom and AI workloads in a single, compact, power-efficient edge platform.

This joint solution delivers sub-30µs latency at 100Gbps throughput using just **4 CPU cores**, allowing operators to:

- Monetize AI at the edge through inference-as-a-service, smart city analytics, and immersive applications.
- **Reduce TCO** by replacing centralized packet processing with distributed, software-based UPFs on COTS hardware.
- Achieve sustainability targets with 80%+ lower power per Gbps compared to legacy UPF appliances

Market Challenges

Operators face unprecedented demands as 5G and emerging 6G architectures evolve:

CHALLENGE	IMPACT	
Ultra-Low Latency Services	AR/VR, autonomous robotics, and agentic AI require sub-millisecond performance.	
Centralized UPF Bottlenecks	Creates backhaul congestion, increases latency, and raises transport costs.	
Edge Compute Requirements	AI workloads demand high memory bandwidth, parallel processing, and minimal footprint.	
Energy & ESG Compliance	Need to deliver higher performance with lower energy use and carbon footprint.	

6WIND AI-RAN Solution Architecture

Distributed UPF (dUPF)

- ▶ Cloud-Native & Flexible: Runs on x86 or ARM, deployed on bare metal, VMs, or Kubernetes.
- Standards-Compliant: 3GPP N3/N4/N6/N9 interface support.
- ▶ **Performance-Optimized**: 100Gbps at <80W power draw with 4 data plane cores.
- ▶ Edge Breakout: Local breakout for real-time AI services reduces backhaul and improves responsiveness.
- ▶ **Security-First**: Integrated ACLs, VRF segmentation, IPsec tunneling.

NVIDIA Grace Hopper Superchip

- Unified AI & Networking Node: Combines GPU and CPU in one platform for co-located AI inference and packet processing.
- ▶ **High Memory Bandwidth**: Ideal for AI models requiring rapid data access.
- Parallel Workload Execution: Runs GTP-U forwarding, inference, and analytics simultaneously.
- ▶ Compact & Efficient: Optimized for space- and power-constrained edge sites.

Integration & Orchestration

- Kubernetes-native deployment with Helm charts for rapid provisioning.
- ▶ Open APIs for integration with telco orchestration (ONAP, Nephio) and CI/CD pipelines.
- ▶ Real-time telemetry with gNMI, Netconf, and streaming analytics.

6WIND AI-RAN Solution Brief | 2

Key Technical Advantages Over Centralized UPF

METRIC	CENTRALIZED UPF	6WIND DUPF ON GRACE HOPPER
Latency	3–10 ms	<0.03 ms
Throughput Scaling	Requires scaling central core	Scales horizontally at the edge
Transport Cost	High (backhaul AI traffic)	Low (local breakout)
Power per Gbps	2–4x higher	80% lower
Deployment Time	Weeks-Months	Hours–Days

Business Benefits

- ▶ Monetize Edge AI: New services such as video analytics, industrial robotics, and AR/VR training can be sold with premium SLAs.
- ▶ Lower CAPEX & OPEX: Reduce server count, transport costs, and power usage with compact, distributed deployments.
- Accelerate Time-to-Market: Deploy AI-enabled services at the edge in hours with containerized UPF
 + AI workloads.
- Sustainability Gains: 80%+ lower energy per Gbps and reduced cooling requirements meet ESG and regulatory goals.
- ▶ **Vendor Independence**: COTS hardware + software-based UPF avoids proprietary lock-in.

Use Case Scenarios

USE CASE	VALUE DELIVERED	
Edge Agentic AI	Real-time, context-aware inference for automation and decision-making at the edge.	
Autonomous Systems	Low-latency connectivity for UAVs, connected vehicles, and robotics.	
Smart Cities	Decentralized AI for traffic, environmental, and security analytics.	
AR/VR & Immersive Media	Consistent, ultra-low latency experiences for entertainment and training.	
Private AI-RAN	Secure, scalable enterprise 5G/6G with localized AI.	
AI Data Lakes at the Edge	Pre-process and store data locally to cut cloud costs and improve real-time insights.	

©2025 6WIND AI-RAN Solution Brief | 3 www.6wind.com

Conclusion

6WIND and NVIDIA have created a **blueprint for AI-powered RAN architectures** that meets the performance, scalability, and sustainability demands of modern telecom networks.

With 6WIND's dUPF on NVIDIA Grace Hopper, operators can:

- Push intelligence and packet processing to the edge.
- Support demanding Al-native applications.
- Reduce costs, latency, and carbon footprint.

The result: a future-ready AI-RAN platform capable of enabling the **6G era** with distributed intelligence at its core.

6WIND AI-RAN Solution – Distributed Intelligence at the Edge

Diagram: 6WIND AI-RAN architecture showing dUPF + NVIDIA Grace Hopper integration for co-located AI inference and telecom packet processing at the RAN edge.

©2025 6WIND AI-RAN Solution Brief | 4