
6WIND copyright 2020

6WINDGate™
-

Architecture Overview
-

V3.0

6WINDGate - Architecture Overview V3.0

 Page ii

6WIND copyright 2020

TABLE OF CONTENTS

1 INTRODUCTION 1

1.1 PURPOSE OF THE DOCUMENT 1

1.2 REFERENCE DOCUMENTS 1

2 GENERAL CONCEPTS OF NETWORK EQUIPMENT ARCHITECTURE 2

2.1 OVERVIEW 2

2.2 DATA PLANE 2

2.3 CONTROL PLANE 3

2.4 MANAGEMENT PLANE 3

2.5 RUNNING ON COMMERCIAL OFF-THE-SHELF HARDWARE AND SOFTWARE 3

3 6WINDGATE OVERVIEW 4

3.1 ARCHITECTURE 4

3.2 MODULES 6

4 6WINDGATE DATA PLANE 9

4.1 PROCESSOR SDK (DPDK) AND FPN-SDK 9

4.2 FAST PATH 9
4.2.1 Packet Processing 9
4.2.2 Fast Path Virtual Interface 11
4.2.3 Supported Protocols 11
4.2.4 Scalability According To The Number Of CPU Cores 14
4.2.5 Fast Path Plugins 14

5 6WINDGATE LINUX SYNCHRONIZATION 16

5.1 EXCEPTION STRATEGY 16

5.2 CONTINUOUS SYNCHRONIZATION 16
5.2.1 Configuration: Cache Manager / Fast Path Manager 16
5.2.2 Statistics And Hitflags 17

5.3 EXAMPLES 17
5.3.1 IP Forwarding Example 17
5.3.2 Dynamic Routing Example 19
5.3.3 IPsec Example 21

6WINDGate - Architecture Overview V3.0

 Page iii

6WIND copyright 2020

6 6WINDGATE CONTROL PLANE 22

6.1 INTRODUCTION 22

6.2 DYNAMIC ROUTING 22

6.3 IKE 22

6.4 OVS 23

6.5 L2TP, PPP 23

7 6WINDGATE MANAGEMENT PLANE 24

7.1 OVERVIEW 24

7.2 YAMS: NETCONF/YANG-BASED MANAGEMENT ENGINE 25

7.3 CLI 26

7.4 MONITORING / ANALYTICS 26
7.4.1 Traditional Monitoring: SNMP 26
7.4.2 Data Plane Analytics: Sflow 26
7.4.3 Next-Gen Monitoring: KPIs 27

7.5 MANAGEMENT EXTENSIBILITY 27
7.5.1 YANG Model And Configuration 28
7.5.2 Monitoring / Analytics 28

8 6WINDGATE HIGH AVAILABILITY 29

8.1 HA BASELINE 29

8.2 HA ARP/NDP SYNCHRONIZATION 29

8.3 HA FIREWALL / NAT SYNCHRONIZATION 29

8.4 HA IPSEC/IKE SYNCHRONIZATION 29

8.5 DAEMON MONITORING SYSTEM 30

8.6 VRRP 30

9 USING 6WINDGATE IN DIFFERENT ENVIRONMENTS 31

9.1 BARE METAL 31

9.2 VIRTUAL MACHINES 31

9.3 CONTAINERS 32

6WINDGate - Architecture Overview V3.0

 Page iv

6WIND copyright 2020

10 6WINDGATE MAIN COMPONENTS AND APIS 33

10.1 OVERVIEW 33

10.2 MAIN COMPONENTS AND APIS REFERENCE 34

6WINDGate - Architecture Overview V3.0

 Page v

6WIND copyright 2020

TABLE OF FIGURES
Figure 1: Networking equipment architecture .. 2
Figure 2: Fast Path Data Plane isolation .. 4
Figure 3: Fast Path-based architecture .. 5
Figure 4: 6WINDGate modules ... 7
Figure 5: IPv4 forwarding packet processing ... 10
Figure 6: Fast Path call flow ... 13
Figure 7: IP forwarding - Step 1 ... 18
Figure 8: IP forwarding - Step 2 ... 18
Figure 9: IP forwarding - Step 3 ... 19
Figure 10: IP routing - Step 1 ... 19
Figure 11: IP routing - Step 2 ... 20
Figure 12: IP routing - Step 3 ... 20
Figure 13: IP routing - Step 4 ... 21
Figure 14: 6WINDGate management architecture .. 24
Figure 15: 6WINDGate management extensibility .. 28
Figure 16: Using 6WINDGate in virtual machines ... 31
Figure 17: Using 6WINDGate in containers .. 32
Figure 18: 6WINDGate detailed architecture .. 33

6WINDGate - Architecture Overview V3.0

 Page 1

6WIND copyright 2020

1 INTRODUCTION

1.1 PURPOSE OF THE DOCUMENT

This document provides an overview of the 6WINDGate 5 software architecture.

• Section 2 gives a general reminder of network equipment architecture.

• Section 3 provides an overview of the 6WINDGate software architecture.

• Section 4 details the 6WINDGate high performance Data Plane, known as the Fast Path.

• Section 5 explains the synchronization between the Control Plane and the Fast Path.

• Section 6 describes the 6WINDGate Control Plane.

• Section 7 presents the 6WINDGate Management Plane.

• Section 8 introduces the 6WINDGate High Availability modules.

• Section 9 describes how 6WINDGate can be used in different environments.

• Section 10 summarizes the 6WINDGate main components and APIs.

1.2 REFERENCE DOCUMENTS

[1] 6WINDGate Modules – Data Sheets

[2] 6WINDGate supported RFCs

http://www.6wind.com/wp-content/uploads/PDF/prod/6WINDGate-RFC-Compliance-List.pdf

6WINDGate - Architecture Overview V3.0

 Page 2

6WIND copyright 2020

2 GENERAL CONCEPTS OF NETWORK EQUIPMENT ARCHITECTURE

2.1 OVERVIEW

The main concepts of an efficient architecture were defined some years ago, as part of the design of high-

speed routers needed to address the explosion of Internet traffic. Now, this architecture has been extended to

new services such as Layer 2 protocols, security, mobility, multicast, etc.

IP-based equipment can be partitioned into three basic elements: Data Plane, Control Plane and Management

Plane (cf. Figure 1).

Figure 1: Networking equipment architecture

2.2 DATA PLANE

The Data Plane is a subsystem of a network node that receives and sends packets from an interface, processes
them as required by the applicable protocol, and delivers, drops, or forwards them as appropriate. The Data

Plane offloads packet forwarding from higher-level processors for most or all of the packets it receives that are

not addressed for delivery to the node itself, it performs all the required processing.

For routing functions, it consists of a set of procedures (algorithms) that a router uses to make a forwarding
decision on a packet. The algorithms analyze the information from a received packet to find an entry in the

forwarding table.

Similarly, for IPsec functions, a security gateway checks if a Security Association is valid for an incoming flow

and if so, the Data Plane finds locally the information that is required to process the packet.

6WINDGate - Architecture Overview V3.0

 Page 3

6WIND copyright 2020

2.3 CONTROL PLANE

The Control Plane maintains information that is used to by the Data Plane for packet processing. Maintaining
this information requires handling complex signaling protocols. Implementing these protocols in the Data Plane

would lead to poor forwarding performance. A common way to manage these protocols is to let the Data Plane
detect incoming signaling packets and locally forward them to the Control Plane. The Control Plane signaling

protocols can update the Data Plane information and inject outgoing signaling packets into the Data Plane.

This architecture works with good performance as signaling traffic is a negligible part of the global traffic.

For routing functions, the Control Plane consists of one or more routing protocols that implement the exchange

of routing information between routers, as well as the algorithms that a router uses to convert this information
into the forwarding table. RIP, OSPF and BGP are examples of such routing protocols. In the case of virtual

routing, multiple instances of forwarding tables are managed at the Data Plane level. As soon as the Data Plane
detects a routing packet, it forwards it to the Control Plane so that the routing protocol can compute new

routes, add routes or delete routes. Forwarding tables are updated with this new information. When a routing

protocol has to send a packet (OSPF Hello packet for instance), it is injected into the Data Plane to be sent in

the outgoing flow.

For IPsec security functions, signaling protocols for key exchange management such as IKE or IKEv2 are in the
Control Plane. Incoming IKE packets are locally forwarded to the Control Plane. When an IKE negotiation

completes, Security Associations and Policies located in the Data Plane are updated by the Control Plane.

Outgoing IKE packets are injected into the Data Plane to be sent into the outgoing flow.

2.4 MANAGEMENT PLANE

The Management Plane provides an administrative interface into the overall system. It contains processes that

support operational administration, management or configuration/provisioning actions such as:

• Facilities for supporting statistics collection and aggregation,

• Support for the implementation of management protocols,

• Command Line Interface, Graphical User Configuration Interfaces through Web pages or traditional

SNMP Management. More sophisticated solutions based on XML can also be included.

2.5 RUNNING ON COMMERCIAL OFF-THE-SHELF HARDWARE AND SOFTWARE

The last concept of modern network equipment is commoditization. The power of the latest standard CPUs

from Intel or Arm, the bandwidth of modern PCI NICs (up to 100G) and the versatility and feature-richness of
the Linux Networking Stack make it possible to build high performance network equipment from Commercial

Off-The-Shelf (COTS) hardware and software, provided that you have the right networking stack to overcome

Linux performance limitations. Let’s detail this in the next section.

6WINDGate - Architecture Overview V3.0

 Page 4

6WIND copyright 2020

3 6WINDGATE OVERVIEW

3.1 ARCHITECTURE

6WINDGate implements a networking architecture as explained in the previous section. This section gives an

overview of the different components of the architecture, which are then described in detail in the following

sections.

Even with an efficient implementation of the Linux Networking Stack in SMP mode, a Linux-based solution

cannot scale because all the packets are managed by the stack and the Linux architecture is limited by OS

latency and lock contention. SMP architectures are not able to fully benefit from the capabilities of many cores.

To go beyond this limitation, the software architecture should implement a Fast Path. CPU cores are dispatched

between Linux OS and Control Plane application processing on one side and Fast Path Data Plane processing

on the other side.

Figure 2: Fast Path Data Plane isolation

Each protocol has to be redesigned to implement time-consuming and recurrent tasks at the Fast Path level

while only complex packets are forwarded to the networking stack. The 6WINDGate Data Plane concepts are

described in detail in section 4.

Coherency of the system is ensured by the exception strategy and by the continuous synchronization between

Linux and the Fast Path, as illustrated in Figure 3.

The goal of this architecture is to provide an offload of the Linux Networking Stack, as transparent as possible

to the Control and Management Planes. The Fast Path processes most of the Data Plane packets without
involving the underlying Operating System. The Fast Path could be compared to a hardware data plane offload

technology, without the limited scalability and programming complexity of an ASIC or FPGA. The Fast Path

offers excellent performance and scalability, with all the comfort and flexibility of software.

6WINDGate - Architecture Overview V3.0

 Page 5

6WIND copyright 2020

Figure 3: Fast Path-based architecture

The following processing is applied to any incoming packet in the system:

• The packet is received by the Fast Path and processed according to local information if present. The

Fast Path implements lock-free packet processing.

• When the Fast Path local information does not allow a received packet to be processed (because it is

intended at a Control Plane protocol, or the local information has not been updated yet, or the protocol

is not supported in the Fast Path), it is sent as an exception packet to the networking stack, where it
is handled using the standard Linux processing. It should be noted that exception packets are only a

few percent of the overall traffic, so that there would be no benefit in having a full and complex IP

stack at the Fast Path level.

• During standard Linux processing, information learned in the networking stack (ARP entries, L3 routes,

IPsec security associations, etc.) is automatically and transparently synchronized to the Fast Path using

the synchronization module, so that the next packet from the same flow can be processed by the Fast

Path.

The combination of the exception strategy and continuous synchronization mechanism allows the system to
process any kind of packet (even those that are not supported or not yet configured in the Fast Path) and

transparently update local information in the Fast Path. The result is that almost all packets are finally processed
by the Fast Path and only a small minority of packets go to the operating system. The 6WINDGate Linux

synchronization concepts are described in section 5.

6WINDGate - Architecture Overview V3.0

 Page 6

6WIND copyright 2020

3.2 MODULES

The 6WINDGate software is modular. You can select the family of modules you need and, within each family,

the modules your application require.

Here are the different families of 6WINDGate modules:

• Processor SDK (DPDK)

• FPN-SDK

• Fast Path

• Linux / Fast Path Synchronization

• Control Plane

• Management

• High Availability

The exhaustive list of 6WINDGate modules is represented in Figure 4.

6WINDGate - Architecture Overview V3.0

 Page 7

6WIND copyright 2020

Figure 4: 6WINDGate modules

6WINDGate - Architecture Overview V3.0

 Page 8

6WIND copyright 2020

In the next sections, we introduce the main families and provide details about their architecture.

A detailed description of the different modules is provided in Module Data Sheets that are available here:

https://doc.6wind.com/6windgate-5/latest/mds/.

Each data sheet includes the following information:

• Module name

• Module features

• Management interfaces

• APIs

• 6WINDGate-related modules

• Implementation details

• Supported RFCs

• Supported hardware platforms

https://doc.6wind.com/6windgate-5/latest/mds/

6WINDGate - Architecture Overview V3.0

 Page 9

6WIND copyright 2020

4 6WINDGATE DATA PLANE

The Fast Path is the 6WINDGate’s high performance networking stack. It is responsible for processing all

packets in the system.

4.1 PROCESSOR SDK (DPDK) AND FPN-SDK

The Fast Path receives and sends packets through the FPN-SDK, the hardware abstraction layer on top of the

hardware-dependent 6WINDGate DPDK.

The 6WINDGate DPDK provides drivers and libraries for high performance I/Os on x86 and Arm. It is based on
the open source DPDK from dpdk.org, provides virtualized networking and crypto add-ons in addition to the

standard features of the open source DPDK, plus commercial support and maintenance.

The FPN-SDK provides zero-overhead APIs that enable Fast Path protocols to receive and send packets on the
wire, to receive and send packets to Linux, to manage memory and to interface with multicore hardware such

as crypto-engines, hardware queues, etc. These APIs are implemented using the processor SDK:

• Application API

• Packet bulk API

• Checksum Computation API

• Core-set management API

• Control Plane Protection API

• Fpn_flow API

• Garbage collector

• Intercore API

• Mbuf structure API

• Message API

• Hardware offload API

• Tools description, FPVI statistics and Control Plane Protection usage.

The list of available modules can be found in Figure 4.

4.2 FAST PATH

4.2.1 Packet Processing

The Fast Path implements the “Run to Completion” model: as soon as a packet has been allocated to a core,

all the processing on this packet is performed by this specific core.

If the Fast Path can process an incoming packet, it passes it to the relevant module that will perform this

processing using information in the Shared Memory.

If the incoming packet cannot be processed at the Fast Path level, the packet is forwarded to the Linux
Networking Stack as an exception packet through the FPVI API. The packet is injected at the right location in

the Linux Networking Stack to avoid any process duplication.

6WINDGate - Architecture Overview V3.0

 Page 10

6WIND copyright 2020

Figure 5 illustrates the operation of a Fast Path protocol, using IPv4 forwarding packet processing as an

example.

Figure 5: IPv4 forwarding packet processing

The Fast Path packet processing is responsible for parsing the incoming packet and determining whether it can

be forwarded with the information available in the local memory.

For that purpose, the following tests have to be performed to achieve the IPv4 forwarding function:

• Firstly, the Fast Path determines whether the incoming packet has an IPv4 ethertype. If the test is
negative, the packet is an exception packet and diverted to the 6WINDGate Linux Networking Stack

to be handled there.

• Then, the IPv4 packet is examined to detect packets that cannot be managed at the Fast Path level,
such as packets with a wrong checksum, incorrect IP options or a TTL at 0. Broadcast/multicast packets

as well as packets reserved with IP destination addresses are also detected. If such an event occurs,
the packet is an exception and diverted to the 6WINDGate Linux Networking Stack to be processed.

• Once this is completed, if the packet has not been diverted, IP lookup is performed to check if there

is valid entry in the routing table. IP lookup in the 6WINDGate IPv4 forwarding Fast Path protocol is

implemented as M-trie 16/8/8 so that any flow is looked up within a fixed number of memory accesses,
thereby achieving the highest performance. At this stage, a determination is made of:

o if a route is found for the destination,

o if the route found in the table is via a Linux Networking Stack interface. For example, it could

be for a PCI or WiFi interface managed by the Linux Networking Stack,

6WINDGate - Architecture Overview V3.0

 Page 11

6WIND copyright 2020

o if the route found in the table is via an unknown interface,

If such an event occurs, the packet is an exception and diverted to the 6WINDGate Linux Networking

Stack to be processed.

• At this stage, the Fast Path has to perform the required processing to mark the ARP entry as reachable,

decrement TTL, update the IP packet checksum and add the ethertype before queuing the packet to
be forwarded.

This simple example shows how a Fast Path protocol works. Of course, the processing becomes more complex

when additional functions are included (e.g. Virtual Routing, Policy-Based Routing, packet bulks, etc.).

Each Fast Path protocol is integrated within the complete 6WINDGate Fast Path architecture to provide a

complete solution (refer Figure 6).

This example also illustrates the flexibility of the 6WINDGate architecture and how it can be used to

progressively add Fast Path protocols. Protocols that are not supported in the Fast Path can be diverted to the
Linux Networking Stack. As soon as the corresponding Fast Path protocol is available, the packet can remain

at the Fast Path level for further processing.

4.2.2 Fast Path Virtual Interface

The Fast Path Virtual Interface (FPVI) allows exchanging packets between the Fast Path and the Linux

Networking Stack. The FPVI makes Fast Path ports appear as netdevices into the Linux Networking Stack.

The purpose of the FPVI is to:

• Provide a physical NIC representor in Linux for configuration, monitoring and traffic capture.

• Send packets from Linux to the Fast Path (locally generated traffic).

• Exchange exception packets between the Fast Path and Linux.

The FPVI is implemented in Linux using the TUN/TAP driver, and in the Fast Path through the FPN-SDK using

the DPDK virtio-user PMD providing a virtual port to each TUN/TAP interface.

Packets to be sent locally by the Linux Networking Stack are directly injected in the outgoing flow to be

processed by the Fast Path, using the TUN/TAP Linux driver.

The FPVI implements the exception strategy as follows:

• For Basic Exceptions, the FPVI implements a standard processing through the netif_rx function of the

TUN/TAP Linux driver.

• For Special Exceptions, on the ingress path, packets are injected at the right place into the Linux
Networking Stack thanks to an eBPF program as explained below. On the egress path, packets are

sent directly using the standard sendmsg() API.

Special Exceptions are sent to Linux with a specific trailer called FPTUN, including information about the
processing that occurred in the Fast Path. They are sent to an eBPF program called the FPTUN handler, which

parses the FPTUN trailer and drives the packets to the right hook inside the Linux Networking Stack for further

processing aligned with the work already done by the Fast Path.

4.2.3 Supported Protocols

The list of available Fast Path modules can be found in Figure 4.

For each supported networking feature, a 6WINDGate Fast Path protocol has been designed, according to the

following guidelines:

• The Fast Path protocol implementation shall be simple and efficient,

6WINDGate - Architecture Overview V3.0

 Page 12

6WIND copyright 2020

• The Fast Path protocol shall be seamlessly integrated with the Linux Networking Stack and Control

Plane,

• The Fast Path protocol shall be portable and optimized for multicore architectures.

These protocols are implemented as high-performance parallel generic software using the FPN-SDK API (refer

to previous section).

The following figure represents the high-level Fast Path call flow with the main supported protocols:

6WINDGate - Architecture Overview V3.0

 Page 13

6WIND copyright 2020

Figure 6: Fast Path call flow

6WINDGate - Architecture Overview V3.0

 Page 14

6WIND copyright 2020

Incoming packets are processed as follows (assuming that all the functions are activated):

• Ingress QoS is applied first.

• Then comes Layer 2 processing.

• The packet is optionally reassembled and filtered (ingress); traffic conditioning (rate limitation) is

applied.

• Layer 3 processing (e.g. forwarding, IPsec, NAT) is then applied.

• The packet is filtered and, if necessary, fragmented.

• Layer 2 processing is performed on the packet again.

• Egress QoS is applied.

At each level, an exception will occur if the packet cannot be processed at the Fast Path level.

In cases where Layer 3 encapsulation is applied (IP tunneling, GRE), the packet is considered as coming back

on a new interface. If several encapsulations are applied, they are applied recursively.

4.2.4 Scalability According To The Number Of CPU Cores

The packet processing performance scales with the number of cores allocated to the Fast Path by combining:

• RSS (Receive Side Scaling) in NICs to dispatch packets into several reception queues according to the

5-tuple of the incoming packet,

• lockless, run-to-completion design of the Fast Path that makes processing in each core independent of

the other.

In some use cases, RSS does not help as the 5-tuple of incoming packets is always the same (for example with

IPsec encapsulation). In these cases, processing is load balanced among cores in software (for example IPsec

crypto processing is offloaded to idle cores).

Some modules cannot be lockless by design because they need to share resources between cores (for example

QoS or TCP use shared software queues). In that case, performance does not scale linearly.

4.2.5 Fast Path Plugins

Fast Path plugins make it possible to customize some part of the Fast Path application without modifying the
main Fast Path engine. Plugins override some "hooks" in the Fast Path by using the dynamic linking load

mechanism.

Here are some available hooks:

• fp_ether_input

• fp_ether_output

• fp_if_output

• fp_ip_input

• fp_ip_inetif_send

• fp_ip6_input

• fp_ip6_inet6if_send

• fp_process_linux_tx

And some Fast Path plugin examples:

6WINDGate - Architecture Overview V3.0

 Page 15

6WIND copyright 2020

• PPPoE load balancer

• Round-robin load balancer

• TCP client, server and proxy

One of the key advantages of Fast Path plugins is to avoid code rebasing when 6WINDGate is rebased. Also,

it is a flexible mechanism to integrate new protocols on top of the 6WIND networking stack.

Refer to the 6WINDGate Fast Path Module Data Sheets for details (one for Baseline and one for each supported

protocol).

6WINDGate - Architecture Overview V3.0

 Page 16

6WIND copyright 2020

5 6WINDGATE LINUX SYNCHRONIZATION

This section describes how information between the Control Plane and Data Plane is synchronized in

6WINDGate Fast Path-based implementation.

5.1 EXCEPTION STRATEGY

If the incoming packet cannot be processed at the Fast Path level, the packet is forwarded to the Linux

Networking Stack as an exception packet through the FPVI (see section 4.2.2).

In general, packets sent through the FPVI are received in Linux through the TUN/TAP reception driver and
processed through the standard Linux Networking Stack. However, in some cases, the original packet cannot

be sent to Linux for standard processing. For example, it is the case for IPsec packets that have been

deciphered and cannot be processed further (e.g. no route for the clear packet). The clear packets cannot be
sent to the standard Linux Networking Stack as they would be dropped because they match a Security Policy.

In that case, the packets are sent to Linux through a dedicated eBPF program to inject them at the right

location in the Linux networking stack (in our case, after ingress IPsec processing).

As the Fast Path is generally more efficient than Linux, generating many exceptions can overload Linux. To
control the exception mechanism, 6WINDGate supports customizing the number of cores responsible for

processing exceptions in Linux, plus rate limitation on the exception channel with prioritization of most

important Control Plane packets.

5.2 CONTINUOUS SYNCHRONIZATION

In order to avoid any modification to the Linux OS, the Control Plane and the Management Plane when the
Fast Path is present, synchronization mechanisms ensure that Linux configuration gets silently synchronized

into the Fast Path and, conversely, that Fast Path statistics end up into the right place in the Linux kernel. This

way, Linux applications continue to rely on Linux APIs to configure or monitor the system.

5.2.1 Configuration: Cache Manager / Fast Path Manager

The Cache Manager is one of the two software modules that perform synchronization between the Linux
Networking Stack and the Fast Path. It monitors the kernel updates performed by the Control Plane protocols

(ARP and NDP entries, Layer 3 routing tables, Security Associations etc.) through Netlink messages and

synchronizes the Fast Path with this information.

Thanks to the Cache Manager, no change is required to Control Plane protocols when they are integrated with

the Fast Path. The Cache Manager is hardware-independent. It provides any required information to be

offloaded to the Fast Path toward the FPC API (refer section 9).

The Fast Path Manager (FPM) is the Control Plane software module responsible for Fast Path configuration.
The FPM updates Fast Path tables according to messages exchanged with the Cache Manager through the FPC

API (refer section 9).

There are two different ways to update the Fast Path: writing into the tables in the shared memory, or sending
a direct message to the Fast Path application when an update needs to trigger an event in the Fast Path (for

example change MTU).

6WINDGate - Architecture Overview V3.0

 Page 17

6WIND copyright 2020

5.2.2 Statistics And Hitflags

As some packets are processed in the Fast Path and others are processed in the Linux Networking Stack, it is
necessary to aggregate Linux and Fast Path statistics. The Fast Path modules update the Shared Memory with

statistics. The FPS daemon reads the Shared Memory and updates the Linux kernel statistics using Netlink.
Some kernel statistics cannot be updated by Netlink. For these, a pre-loadable library is provided, so that

Netlink statistics requests are updated transparently with the Fast Path statistics from the Shared Memory.

This way, Linux applications that read statistics from Linux receive aggregated Linux Networking Stack + Fast

Path statistics.

Similarly, for packets processed by the Fast Path, the corresponding Linux object states (ARP entries,
conntracks, Linux bridge, etc.) have to be updated to prevent their expiration. The Fast Path modules update

the Shared Memory when an entry is hit (hitflag). The Hitflags daemon reads the Shared Memory and updates

the corresponding Linux kernel entry using Netlink. Linux applications read object states from Linux as usual.

Refer to the 6WINDGate Linux / Fast Path Synchronization Module Data Sheet for details.

Note that a few modules are not synchronized with Linux:

• TCP, as accelerated TCP applications have to be ported into the Fast Path and are therefore

independent from the Linux Networking Stack;

• QoS, as for performance reasons the 6WINDGate architecture is very different from Linux’s and

synchronization is not possible;

• CG-NAT, as there is no Linux CG-NAT implementation and therefore nothing to synchronize.

5.3 EXAMPLES

5.3.1 IP Forwarding Example

Using IP forwarding and routing as an example, the following sections explain how transparent synchronization

between the Fast Path, the Linux Networking Stack and the Control Plane is performed for both static
configurations (iproute2, ifconfig, etc.) and dynamic protocols (BGP with FRR, IKE with strongSwan, etc.). It

also shows that synchronization does not require any change in the Control Plane protocols, as it relies on

standard OS APIs.

6WINDGate - Architecture Overview V3.0

 Page 18

6WIND copyright 2020

Figure 7: IP forwarding - Step 1

Figure 8: IP forwarding - Step 2

6WINDGate - Architecture Overview V3.0

 Page 19

6WIND copyright 2020

Figure 9: IP forwarding - Step 3

5.3.2 Dynamic Routing Example

Figure 10: IP routing - Step 1

6WINDGate - Architecture Overview V3.0

 Page 20

6WIND copyright 2020

Figure 11: IP routing - Step 2

Figure 12: IP routing - Step 3

6WINDGate - Architecture Overview V3.0

 Page 21

6WIND copyright 2020

Figure 13: IP routing - Step 4

5.3.3 IPsec Example

The same architecture design is applied to all the protocols supported in 6WIND’s product, including IPsec.

6WIND Control Plane synchronization daemons allow replication of Security Associations and Security Policies
in the Fast Path Shared Memory. In this way, when a packet matching a security policy is processed by

6WINDGate IPsec, all the necessary information to cipher/decipher it is locally available. The cryptographic

operation is then taken care of by 6WIND accelerated Data Plane. When a packet reaches the Fast Path for a
SA that is not yet negotiated, this packet is delivered to the Linux kernel stack through the exception mechanism.

The kernel can then trigger an acquire message.

Control plane IKE packets are also sent to Control Plane daemon using the same exception mechanism.

On Intel x86 architecture, 6WIND supports DPDK add-ons to benefit from AES-NI Multi-buffer library, or

external cryptographic acceleration/offload cards (Intel DH895xCC Coleto Creek, Intel Lewisburg and C3000

integrated QAT module).

6WINDGate - Architecture Overview V3.0

 Page 22

6WIND copyright 2020

6 6WINDGATE CONTROL PLANE

6.1 INTRODUCTION

As explained in detail in section 5, 6WINDGate automatically synchronizes the Linux Networking Stack states

with its own local information. This mechanism is based on standard Linux APIs, so that standard Linux Control

Plane utilities can be used to manage the system. We can commonly think of iproute2 to configure static IP
addresses, routes, neighbors, and create logical interfaces like VLAN, VXLAN, etc. All the common networking

utilities are available in the 6WINDGate product.

Additionally, this means that open source Control Plane daemons configuring the Linux network stack can also

be used as-is. 6WINDGate leverages this by embedding:

• FRRouting for dynamic routing,

• strongSwan for IKE,

• Open vSwitch for OVS.

6.2 DYNAMIC ROUTING

The 6WINDGate routing Control Plane module enables route management over a wide variety of routing

protocols. It is provided by the zebra daemon, from the open source FRR project.

Features:

• RIPv1/RIPv2 for IPv4 and RIPng for IPv6

• OSPFv2 and OSPFv3

• BGP4

• MPLS control plane

• Virtual routing

• Multicast routing (road map)

Releases of FRR integrated in 6WINDGate follow the upstream versions. 6WIND also contributes to this open

source project by submitting bug fixes back to the community.

Refer to the 6WINDGate Control Plane Routing Module Data Sheet for details.

6.3 IKE

The 6WINDGate security Control Plane module implements the IKEv1 and IKEv2 protocols. It allows negotiating
keying material (IPsec SAs) for the use of IPsec VPNs. It is based on the latest version of the open source

strongSwan IPsec-based VPN solution.

All strongSwan features are supported by 6WIND.

Refer to the 6WINDGate Control Plane Security Module Data Sheet for details.

6WINDGate - Architecture Overview V3.0

 Page 23

6WIND copyright 2020

6.4 OVS

The 6WINDGate OVS Control Plane module provides virtual switching, flow matching, and packet manipulation,
configured via an OpenFlow controller or the command line. It is based on http://www.openvswitch.org/. This

module follows the open source releases.

Features:

• The Control Plane OVS module provides the following capabilities:

o Manage, control and debug the OVS datapath

o Support for statistics synchronization with the Fast Path

o Support for hitflags (a flow not hit by the kernel datapath, but hit by the Fast Path datapath,

stays alive)

o Support for direct addition/deletion of flows in the Fast Path Shared Memory

Refer to the 6WINDGate Control Plane OVS Module Data Sheet for details.

6.5 L2TP, PPP

In road map.

http://www.openvswitch.org/

6WINDGate - Architecture Overview V3.0

 Page 24

6WIND copyright 2020

7 6WINDGATE MANAGEMENT PLANE

7.1 OVERVIEW

The 6WINDGate Management Plane (cf. Figure 14) comprises three main building blocks:

• Engine and Data Store: YAMS, a Python-based engine configuring and monitoring all network

components. The YAMS engine uses a YANG model data store.

• Configuration: A NETCONF server providing a standard API to interface with NETCONF-based

configuration tools. 6WIND has developed its own CLI tool as a NETCONF client to configure

6WINDGate features.

• Monitoring / Analytics: Traditional SNMP and sFlow monitoring services as well as advanced services

through a KPI (Key Performance Indicator) agent collecting and streaming statistics.

Figure 14: 6WINDGate management architecture

The 6WINDGate Management Plane consists of the following modules:

• Management Baseline provides:

o NETCONF server

o YANG-based datastore

o YAMS

6WINDGate - Architecture Overview V3.0

 Page 25

6WIND copyright 2020

o SNMP

o Support of Fast Path features (Control Plane features supported through add-ons)

• Management Routing add-on provides management of the Control Plane Routing module,

• Management Security add-on provides management of the Control Plane Security module,

• Management VRRP add-on provides management of the High Availability VRRP module,

• Management CLI provides the Command-Line Interface (NETCONF client),

• Management sFlow provides the sFlow protocol and its management,

• Management KPIs provides the Key Performance Indicators YANG-models, engine and agent to stream

the data to an external Time-Series Database.

7.2 YAMS: NETCONF/YANG-BASED MANAGEMENT ENGINE

NETCONF is a network management protocol standardized by the IETF. It defines mechanisms to install,

manipulate and delete the configuration of network devices. It uses Extensible Markup Language (XML)-based
data encoding for the configuration data as well as the protocol messages. More information is available in RFC

6241.

YANG is a language used to model data for the NETCONF protocol. A YANG module defines a hierarchy of data
that can be used for NETCONF-based operations, including configuration, state data, Remote Procedure Calls

(RPCs), and notifications for network management protocols. More information is available in RFC 7950.

The NETCONF API can be used from any NETCONF client to configure and monitor the router remotely,

therefore enabling automation and orchestration.

NETCONF/YANG-based engine

The management engine comprises a YANG-based datastore and a NETCONF server. It supports all the

required protocol operations to read and write the configuration: <get>, <get-config>, <edit-config>, <copy-

config> and so on.

Clear separation between configuration and state data

The management engine stores separate configuration and state data for each feature. The state part includes
additional runtime information compared to the configuration part; typically, statistics. It is possible to display

the state data from anywhere in the CLI using the get command, so that the user can review data from the

current state while building his configuration.

VRFs

The networking configuration is natively split into VRFs in order to provide a high level of isolation between

Management Plane and networking plane. Each VRF has its own interfaces, IP addresses, routing table, firewall,

etc.

This approach ensures a good isolation of services and will allow in the future to define limits in term of CPU

resource or memory for a given VRF. It relies on Linux network namespaces (netns).

Compatibility with existing Linux Day-1 configuration

Cloud-init can be embedded in 6WINDGate for Day-1 configuration, that is, the initial configuration of

6WINDGate to enable basic console access. It can be used to configure the management interface, basic

networking services such as DHCP and SSH, provision the SSH keys, etc.

The management engine is compatible with such cloud-init configuration, as it does not touch the configuration
of network services (SSH, DNS, DHCP, etc.) as long as there is no configuration statement for them. When a

6WINDGate - Architecture Overview V3.0

 Page 26

6WIND copyright 2020

configuration statement is present, it takes precedence over any existing, external configuration. Finally, a

known service like SSH will be recognized and will not be restarted if it is not necessary.

Refer to the 6WINDGate Management Baseline Module Data Sheet for details.

7.3 CLI

The CLI is the common user interface to interact with 6WINDGate. It can be used to configure, monitor and

troubleshoot. The CLI provides help and completion, as well as the management of configuration files to save

and restore a complete and consistent configuration in one command.

The CLI is actually a NETCONF client that communicates with 6WINDGate’s YANG-based configuration engine.
Its command names and statements follow the syntax and the hierarchical organization of the 6WINDGate

YANG models. Data consistency is checked against the YANG model, so that syntax errors are detected early.

The configuration engine supports transactions and rollback on error.

The CLI comes with traditional features, such as completion, history and contextual help. Users can walk the

configuration tree as they would browse a file system, for example, “/” jumps to the root of the configuration, ”..”
moves one level up. Relative and absolute paths can be used to refer to configuration data, making browsing

very efficient.

Refer to the 6WINDGate Management CLI Module Data Sheet for details.

7.4 MONITORING / ANALYTICS

6WINDGate provides a complete portfolio of services for network monitoring and analytics (refer Figure 14).

7.4.1 Traditional Monitoring: SNMP

SNMP (Simple Network Management Protocol) is an Internet-standard protocol for collecting and organizing

information about managed devices on IP networks.

It exposes management data in the form of variables on the managed systems organized in a MIB

(Management Information Base) that describes the system status. These variables can then be remotely

queried by management applications.

The 6WINDGate SNMP management module provides the support of SNMP monitoring, based on the net-snmp

(http://www.net-snmp.org) open source project.

6WINDGate supports SNMPv1, SNMPv2c (basic authentication with community strings) and SNMPv3

(authentication with SNMP users).

Supported MIBS include standard system and networking MIBs (interface, IP, IPv6, IP forward, etc.), routing

MIBs (BGP, OSPF, RIP), VRRP MIBs and 6WIND-developed IPsec MIB.

Refer to the 6WINDGate Management Baseline SNMP Module Data Sheet for details.

7.4.2 Data Plane Analytics: Sflow

sFlow is a technology for monitoring traffic in data networks containing switches and routers. In particular, it

defines the traffic sampling mechanisms implemented in sFlow Agents and the format of the sFlow Datagram

that carries traffic measurement data from sFlow Agents to an sFlow Collector.

6WINDGate - Architecture Overview V3.0

 Page 27

6WIND copyright 2020

This module is based on host-sflow, which is an open source implementation of the sFlow standard. It is

patched by 6WIND for Fast Path offload.

Refer to the 6WINDGate Management sFlow Module Data Sheet for details.

7.4.3 Next-Gen Monitoring: KPIs

In addition to traditional monitoring, 6WINDGate provides an advanced monitoring solution based on time

series collection and visualization of Key Performance Indicators (KPIs). With such a solution, it is much easier

to understand problems that happened in the past and to correlate them to past events. And it may even be

used to predict the future as the user directly visualizes the dynamics of the system.

6WINDGate KPIs are pre-integrated with the InfluxDB time-series database and the Grafana analytics frontend.
An example of InfluxDB/Grafana setup is described on 6WIND’s github. Integration with other TSDB or analytics

frontends is possible. Telegraf is used to collect KPIs and export them to InfluxDB.

KPIs are modelized using YANG and exposed using NETCONF or a local API. The KPIs module consists in:

• The KPIs daemon (kpid), for both Linux system and Fast Path modules,

• The monitoring engine (YAMS), exposing the KPIs with local API and NETCONF/YANG API in a consistent

way,

• The tool (kpi-tool) to query the API for direct use by common existing tools (JSON, Telegraf/InfluxDB).

Refer to the 6WINDGate Management KPIs Module Data Sheet for details.

7.5 MANAGEMENT EXTENSIBILITY

The 6WINDGate management architecture can be customized to extend the 6WINDGate management services.

These extensions are summarized in Figure 15.

https://www.influxdata.com/time-series-platform/influxdb/
https://grafana.com/
https://github.com/6WIND/supervision-grafana
https://github.com/influxdata/telegraf/blob/master/README.md

6WINDGate - Architecture Overview V3.0

 Page 28

6WIND copyright 2020

Figure 15: 6WINDGate management extensibility

7.5.1 YANG Model And Configuration

As 6WINDGate configuration services rely on a NETCONF API, all tools including automation and orchestration

platforms based on a NETCONF client can be easily integrated with 6WIND.

The 6WINDGate CLI can also be extended to develop new commands for an existing 6WINDGate feature. For

instance adding a new CLI command for routing configuration or routing information display.

Users can also use the 6WINDGate configuration framework to integrate the configuration of a user feature in
a consistent manner with all existing services. For instance, a user can develop a 6WINDGate management

extension for a user GTP module integrated with 6WINDGate.

Extensions of the 6WINDGate CLI are automatically available after extending the corresponding YANG models.

The CLI documentation (command reference) is also automatically generated.

Examples of extensions of YANG models and CLI are provided in 6WINDGate management documentation.

7.5.2 Monitoring / Analytics

The 6WINDGate open architecture can be used in different ways to extend monitoring and analytics services.

First of all, users can extend the services and data available in 6WINDGate to:

• Add or extend the 6WINDGate available KPIs,

• Create new KPIs for user features integrated with 6WINDGate,

• Customize the Grafana dashboards available under 6WIND github for displaying 6WINDGate or user

features.

It is also possible to use different tools:

• The Telegraf agent can be integrated with another Time Series Data Base tool like ElasticSearch instead

of Influxdb,

• Influxdb can be integrated with another graphical front-end like Kibana instead of Grafana,

• The 6WINDGate Telegraf agent can be replaced by another KPI agent such as collectd.

https://github.com/6WIND/supervision-grafana

6WINDGate - Architecture Overview V3.0

 Page 29

6WIND copyright 2020

8 6WINDGATE HIGH AVAILABILITY

The list of 6WINDGate High Availability modules is the following one:

• HA Baseline

• HA ARP/NDP Synchronization

• HA Firewall / NAT Synchronization

• HA IPsec/IKE Synchronization

• Daemon Monitoring System

• VRRP

Modules data sheets are available upon request for more information.

8.1 HA BASELINE

The HA Baseline module provides libraries and scripts common to other High Availability synchronization

modules.

Refer to the 6WINDGate High Availability Baseline Module Data Sheet for details.

8.2 HA ARP/NDP SYNCHRONIZATION

The HA ARP/NDP Synchronization module allows synchronizing ARP (Address Resolution Protocol)/NDP

(Neighbor Discovery Protocol) tables between two different machines.

Refer to the 6WINDGate High Availability ARP/NDP synchronization Module Data Sheet for details.

8.3 HA FIREWALL / NAT SYNCHRONIZATION

6WIND HA Firewall / NAT Synchronization module allows synchronizing conntracks between two different

machines.

It is based on the conntrackd open source daemon.

This module synchronizes the stateful session table between the active firewall and the backup firewall. After

a failover, the backup firewall session table is already up-to-date and the traffic continues to be forwarded

without session interruption.

Refer to the 6WINDGate High Availability Firewall / NAT Synchronization Module Data Sheet for details.

8.4 HA IPSEC/IKE SYNCHRONIZATION

The HA IPsec/IKE Synchronization module enables to synchronize IKE (Internet Key Exchange) and IPSEC

(Internet Protocol Security) between two different machines.

Refer to the 6WINDGate High Availability IPsec/IKE Synchronization Module Data Sheet for details.

6WINDGate - Architecture Overview V3.0

 Page 30

6WIND copyright 2020

8.5 DAEMON MONITORING SYSTEM

The HA Daemon Monitoring System provides crash recovery and proactive health check of daemons.

Refer to the 6WINDGate High Availability Daemon Monitoring System Module Data Sheet for details.

8.6 VRRP

The 6WINDGate VRRP Control Plane module provides a way, for a set of routers, to control a virtual IPv4 and

MAC addresses, including automatic failover mechanism. Such an address may be used by hosts for some

service access, e.g. as static default gateway. The gain from using VRRP is a higher availability of the service

without requiring automatic reconfiguration of end hosts.

6WINDGate integrates the open source keepalived daemon. 6WIND’s Fast Path supports the synchronization

of macvtap interfaces created by the keepalived daemon.

Features:

• VRRPv2 RFC 3768 (https://tools.ietf.org/html/rfc3768.html) (IPv4 only)

• Automatic election of master router

• Preemption when a backup server with higher priority than master is present

• Advertisement interval (to indicate that master is still in service) from 1 to 255 seconds

• Ability to create several VRRP groups and to synchronize them: a router, belonging to different groups,
has the same state (master or backup) in any group

• Authentication (Simple Text Password or IP Authentication Header) as defined in VRRPv1 RFC 2338

(https://tools.ietf.org/html/rfc2338.html)

• Remote management with SNMP

Refer to the 6WINDGate High Availability VRRP Module Data Sheet for details.

https://tools.ietf.org/html/rfc3768.html

6WINDGate - Architecture Overview V3.0

 Page 31

6WIND copyright 2020

9 USING 6WINDGATE IN DIFFERENT ENVIRONMENTS

To address a wide variety of applications, 6WINDGate can be used in different environments including:

• Bare metal

• Virtual machines

• Containers

9.1 BARE METAL

6WINDGate can be used in a bare metal environment. All the Linux resources are directly accessible and used

by 6WNDGate. For example, 6WINDGate DPDK directly interfaces with physical drivers of the NICs.

9.2 VIRTUAL MACHINES

Figure 16 shows how 6WINDGate can be used in a virtual machine. Each virtual machine has its own and

dedicated Linux kernel and embeds a complete instance of 6WINDGate.

It is recommended to use SR-IOV to bypass and remove performance bottlenecks in the hypervisor (KVM in
this example). The actual physical NIC is split into several Virtual Functions (Eth-VF) that are attached and

dedicated to the Virtual Machine. The Fast Path interacts directly with the Eth-VFs through the 6WINDGate

DPDK.

Figure 16: Using 6WINDGate in virtual machines

6WINDGate - Architecture Overview V3.0

 Page 32

6WIND copyright 2020

9.3 CONTAINERS

Figure 17 shows how 6WINDGate can be used in containers. Containers are userland application isolated in a

Linux network namespace (netns), sharing a single Linux kernel.

Similarly to VM deployments, it is recommended to use SR-IOV to dedicate VFs to container instances in order

to get the best performance.

Figure 17: Using 6WINDGate in containers

6WINDGate - Architecture Overview V3.0

 Page 33

6WIND copyright 2020

10 6WINDGATE MAIN COMPONENTS AND APIs

10.1 OVERVIEW

6WINDGate is designed to be extensible at all levels. Figure 18 details the main components and APIs of the

6WINDGate packet processing software.

Figure 18: 6WINDGate detailed architecture

A 6WINDGate user can customize the source code for miscellaneous needs.

6WINDGate - Architecture Overview V3.0

 Page 34

6WIND copyright 2020

10.2 MAIN COMPONENTS AND APIs REFERENCE

The following table summarizes the main components and APIs available in 6WINDGate for quick reference.

Name Purpose

FPN-SDK (Fast Path

Networking SDK)

The FPN-SDK is the abstraction layer on top of the underlying hardware architecture. It
provides the FPN API to the Fast Path modules and implements it using the HW-specific

SDK (today DPDK for Intel and Arm architectures).

See section 4.1 for more information.

FPN API (Fast Path

Networking API)

The FPN API is the generic API between the Fast Path Modules and the CPU, NICs,

Shared Memory and Linux.

It provides:

1. Packet buffer (mbuf)

2. Access to Shared Memory (userland / kernel / Fast Path)

3. FPVI (see below)

4. Crypto with HW support and SW fallback

5. Offloads: checksum, TCP (LRO, TSO)

6. And more: Control Plane protection, fast and scalable timers, memory pool and
ring, lock and synchronization, atomic operations, CPU usage monitoring,

function calls tracking for debugging, inter-core packet distribution…

It is provided by the FPN-SDK module.

Fast Path Modules Actual implementation of the Fast Path networking stack, taking care of high-

performance packet processing.

See section 4.2 for more information.

Fast Path Plugin API Fast Path plugins make it possible to customize some part of the Fast Path application

without modifying the main Fast Path engine.

6WINDGate developers can implement their own plugins using the plugin API to

hook into the packet processing and using the FPN API to actually process

packets.

FPVI The FPVI provides a NIC representor (netdevice) in Linux for interaction with the Fast

Path Modules.

It is implemented by each Fast Path Module on the Fast Path side and as a TUN/TAP

device and an eBPF program in Linux.

The FPVI implements the exception strategy for all exceptions as described in section
5.1. Extended exceptions imply the use of the FPTUN proprietary protocol and a FPTUN

handler (eBPF program) to inject packets into the Linux Networking Stack.

It is also used by Linux to send data packets through the Fast Path.

6WINDGate developers extend the FPVI and the FPTUN handler in case they need to

add new exception types for their own Fast Path Modules.

6WINDGate - Architecture Overview V3.0

 Page 35

6WIND copyright 2020

Netlink API The Netlink API is used by the Cache Manager to monitor kernel events and state

changes for interfaces, Layer 2 / Layer 3 tables, IPsec, etc. It is a standard Linux

notification mechanism.

Refer to section 5.2 for detailed information about the Linux / Fast Path Continuous

Synchronization mechanism.

FPC (Fast Path

Control) API

The FPC API is the communication API between the Cache Manager and the Fast Path

Manager.

The FPC synchronizes the states of the Linux Networking Stack with the Fast Path

without any modification of the existing services that distribute the information.

Therefore, there is no need to modify any existing daemons or kernel modules to

interface to the Fast Path when you use the FPC and the Cache Manager.

Refer to section 5.2 for detailed information about the Linux / Fast Path Continuous

Synchronization mechanism.

Shared Memory The Shared Memory contains structures for:

• Physical ports

• Forwarding table

• Statistics

• IPsec processing

• etc.

It is used by:

• the Fast Path Manager to write local information received from Cache Manager

through FPC messages

• the Fast Path to read local information used for packet processing (L2/L3

entries, IPsec SAs, etc.) and write statistics

• the FPS to read statistics

NETFPC The NETFPC API triggers events in the Fast Path from the Fast Path Manager as part of

the Linux / Fast Path Continuous Synchronization mechanism.

FPS (Fast Path

Statistics) and Hitflags

The Fast Path Statistics (FPS) and Hitflags daemon read statistics and protocol state
information from the Shared Memory and update the corresponding stats and state

information in the Linux kernel using Netlink. For statistics that cannot be updated by

Netlink, a pre-loadable library is provided, so that Netlink statistics requests are

updated transparently with the Fast Path statistics.

NETCONF/YANG API The NETCONF API is used by the CLI to configure and monitor 6WINDGate.

YANG models are fully documented and the NETCONF API can indeed be used from any

NETCONF client (local or remote).

The CLI is automatically generated from the YANG data model, so that extending the

model automatically results into new CLI commands.

6WINDGate - Architecture Overview V3.0

 Page 36

6WIND copyright 2020

YAMS (YANG-based

Management System)

YAMS is the interface between the YANG-based management engine and the Linux

system. When a new configuration is received in the datastore, YAMS configures it in
Linux using standard Linux APIs. It also retrieves monitoring information from Linux

and stores it into the datastore according to the YANG data model, so that it can be

queried from a NETCONF client.

