

©6WIND 2020 2

6WIND Mission – Democratize Networking

Provide the future of networking with software on white box servers,
giving customers independence from expensive networking hardware at a
fraction of the cost, while delivering the high performance necessary for

software to replace hardware

©6WIND 2020 3

 Build-Your-Own vRouter
 6WINDGate

 Complete L2-4 networking stack

 A la carte modules

 vRouter for Network Appliances
 IP Routing

 IPsec VPNs

 CG-NAT

 vRouter for Hypervisor
 Virtual Accelerator

6WIND Software for High Performance Networking

Management

Software Infrastructure

Network Applications

Server
Hardware

Hypervisor
Acceleration

Routing

Security

CG-NAT

Source
Code

Foundation

©6WIND 2020 5

 Performance of TCP applications is limited by Linux

 6WINDGate provides a high performance TCP stack relying on the 6WINDGate architecture to offload
packet processing from Linux
 High throughput

 Low latency

 Large number of simultaneous sessions

 Fast session establishment rate

 Let’s take two examples using TCP Proxy and TCP Termination

The TCP Problem

©6WIND 2020 6

 Cyber Threat Protection
Devices (UTM, IPS, IDS
etc.) include SSL
Inspection solutions built
on TCP proxies

 TCP proxy performance is
limited by Linux kernel
bottlenecks that cripple
SSL Inspection speed

 High performance TCP
proxy solutions are
required to remove the
Linux bottlenecks

SSL Inspection for Cyber Threat Protection

TCP Proxy

Security Applications

SSL Inspection

Linux Kernel
UTM, IPS, IDS, etc.

Application talks to
Linux kernel socket

layer

Client Server

This image cannot currently be displayed.

Linux kernel
bottleneck

Secure SSL
Packet

Inspected
SSL Packet

©6WIND 2020 7

 Number of concurrent
sessions: 8 million

 Connection rate:
1 million CPS

 Transaction rate:
7.1 million TPS

 Throughput:
12 Gbps per core

 Latency: 24 µs

 Integrated with 6WINDGate
L2-L3 protocol stacks
including Linux
synchronization

 Dedicated Transparent TCP
Proxy APIs

6WINDGate High Performance TCP Proxy For SSL Inspection

Security Application

SSL Inspection

Linux Kernel

Application Talks to
6WIND’s

Transparent TCP
Proxy APIs

Client Server

6WIND Fast
Path Removes

Linux Bottleneck

Secure SSL
Packet

Inspected
SSL Packet

Userland

UTM, IPS,
IDS, etc.

©6WIND 2020 8

 Test and Measurement
solutions are built on TCP
stacks with growing
performance requirements

 TCP stack performance is
limited by Linux kernel
bottlenecks

 High performance TCP
stacks are required to
remove the Linux
bottlenecks

Test and Measurement Solutions for TCP Networks

TCP Stack

Test And Measurement
Application

Linux Kernel

Application talks to
Linux kernel socket

layer

Linux kernel
bottleneck

Receive
Response

TCP
Networks

Generate
Traffic Test TCP Networks

This image cannot currently be displayed.

Bare Metal or Virtual

©6WIND 2020 9

 Number of concurrent
sessions: 6 million

 Connection rate:
1.4 million CPS

 Transaction rate:
7.1 million TPS

 Throughput:
12 Gbps per core

 Latency: 24 µs

 Integrated with 6WINDGate
L2-L3 protocol stacks
including Linux
synchronization

 Extensible APIs to
collect statistics

6WINDGate High Performance TCP Stack For Test And
Measurement Solutions

Application Talks to
6WIND’s TCP Stack

APIs

6WIND Fast
Path Removes

Linux
Bottlenecks

Test &
Measurement

Application

Linux Kernel

Bare Metal or
Virtual

Userland

Test TCP Networks

Receive
Response

TCP
Networks

Generate
Traffic

©6WIND 2020 11

Fast Path

Flow
Inspection

MPLS/VPLS
Encapsulation

Link
AggregationVLAN Ethernet

Bridging

Filtering
Ethernet
Bridging

OVS
Acceleration

GREIPv4/IPv6
Reassembly

IPv4/IPv6
Multicast

IPv4/IPv6
Forwarding NATFiltering

IPv4/IPv6

QoS
Basic

TLS/DTLS

Tunneling
(IPinIP)

IPsec
IPv4/IPv6 VXLAN L2TP/PPPoE

BRAS
IPsec
SVTI

Policy-based
Routing

CG-NAT

QoS
Advanced

CG-Firewall

Segment
Routing v6

Linux / Fast Path Synchronization
VRF

High Availability

Firewall /
NATARP / NDP

VRRP DMS

IPsec/IKE

Accelerated Layer 2-4 Stacks Synchronized with Linux

Management

CLI

SNMPsFlow

KPIsNETCONF

FPN - SDK

6WINDGate DPDK

Intel®
QuickAssist

Crypto

Intel® Multi-
Buffer
Crypto

Virtio Host
PMD

Supported NICs

Control Plane

SecurityOVS
Routing,
Virtual

Routing

L2TP,
PPPoE
BRAS

Multicast
Routing

Roadmap

TCP/UDP
Termination

©6WIND 2020 12

 Software
 6WINDGate source code license including the TCP

modules and others 6WIND modules depending on the
customer use case

 Integrated with L2-L3 6WINDGate modules

 TCP stack configuration through dedicated CLI

 TCP/UDP-based application must be integrated with
Fast Path Socket Integration Layer

6WINDGate TCP/UDP Termination

L2-L3 Fast Path

VLAN, Bridge, GRE,
IPv4/IPv6 Forwarding,

Filtering/NAT, IPsec, VRF,
etc.

Linux /
Fast
Path
Sync

Linux
Kernel

Fast Path
TCP/UDP

Termination

Fast Path
Socket Integration Layer

TCP/UDP-based Application

Fast Path
TLS/DTLS

©6WIND 2020 13

 Stack implementation
 Redesigned and fully optimized for multi-core execution environments

 Highly scalable processing of parallel establishment / shutdown of TCP connections

 High performance data exchanges on a huge number of TCP/UDP sockets on established TCP connections

 Event driven notifications from the stack to the application

 Plugin support for custom TCP/UDP applications including bridged and routed transparent proxy support with
configurable IP bypass lists

 Socket API
 Full support of TCP and UDP sockets over IPv4 and IPv6

 POSIX-compliant socket API and Zero-copy based socket APIs

 VRF-aware sockets

 Netstat like support to dump state and statistics of the sockets

6WINDGate TCP Implementation

©6WIND 2020 14

TCP application Linux Networking Stack

Architecture
 TCP application performance suffers from Linux

networking stack bottlenecks

Linux socket
API

©6WIND 2020 15

Fa
st

 P
at

h
Architecture

TCP/UDP termination

Shared Memory

TCP/UDP
configuration

TCP/UDP
statistics

Fast Path
socket API

Flow InspectionLink AggregationTunneling (IPinIP)

MPLS/VPLS
EncapsulationBridge / OVSVLAN/GRE/VXLAN

Filtering/NATIPsecForwarding
IPv4/IPv6

TCP application

Fast Path Socket Integration Layer

Linux Networking Stack

 Fast Path TCP/UDP termination
 TCP/UDP protocols are processed in the Fast Path

 Full featured TCP/UDP stack using BSD-like socket API

 Timers are re-designed to get more scalability

 Locks are removed

 Memory footprint is reduced

 Performance
 Scale: 8M active concurrent TCP sockets

 Throughput: 40+ Gbps

 CPS: 1.47M TCP connections per second

 TPS: 7.1M TCP transactions per second

 Latency TTFB: 24 µs

 Optimized Fast Path TCP/UDP socket implementation
 Using event-based socket callbacks

 Latency of socket calls is minimized

©6WIND 2020 16

 Available
 TCP_SACK and TCP_FACK

 TCP_QUICKACK

 Socket options to retrieve/Set TTL, MSS,
TOS, DF bit

 Reno, New Reno

 ECN support (RFC 3168)

 TCP Protection against wrapped sequence
number

 TCP Appropriate Byte Counting (RFC 3465)

 TCP Segment Offload (TSO) support

 Window Scaling

 L2 bridge hook for transparent proxy

 UDP transparent proxy

 TLS v1.2/v1.3 support

 DTLS v1.2/v1.3

 20/Q1
 Per socket rate-limit

(SO_MAX_PACING_RATE)

 Initial congestion window per route (initcwnd)

 Cubic congestion algorithm

 TCP early retransmit (RFC 5827)

 TCP Fast Open (RFC 7413)

 Optimizations

 Mbuf clone support: avoid copy on
transmit side

 Bulk API

 L2 bridge plugin enhancement for
Transparent proxy

 Support L2 flow association with socket
(ETH/VLAN)

 TCP syn cookies

 20/Q3 and next
 PATH MTU discovery and ICMP support

 Duplicate SACK (RFC 3708), challenge ack
limit

 TCP fast RTO (RFC 5682)

 Slow Start After Idle (RFC 5681)

 L2 bridge plugin enhancement for
Transparent proxy

 QinQ

 VxLAN

 PPPoE

 GTP-U

 L2TPv2/v3

 Full transparency: Socket creation in
connected state

6WINDGate TCP Features Details

©6WIND 2020 17

 Tester is IXIA XT80 using IxLoad 8.01.106.3

 Node under test
 CPU: 2 x Intel(R) Xeon(R) Platinum 8170 CPU @ 2.10GHz

 RAM: 48 GB DDR3

 NICs: 4 x Intel X520 and 82599ES dual port 10G

 Benchmarks

Benchmarks Platform

et
h3

_0

et
h4

_0

et
h5

_0

et
h6

_0

et
h7

_0

et
h8

_0

et
h9

_0

et
h2

_0

Fast
pathTCP/UDP

Termination
TCP/UDP
Application

Fast path
socket API

 Proxy

 CPS

 Bandwidth

 Server

 CPS

 TPS

 Bandwidth

 Latency

©6WIND 2020 18

 TCP connection rate
 Reported result is system TCP continuous socket open and close per second

capacity

 TCP sockets are opened first to reach socket objective (10K to 8M sockets)

 Once objective is reached, sockets are continuously closed and opened at maximum
rate

 The connection rate reported is the average rate measured

 TCP bandwidth
 Reported result is throughput received by IXIA

 TCP sockets are opened first to reach socket objective (10K to 2M+ sockets)

 New sockets opened are used for traffic emission and reception

Proxy Benchmarks

et
h3

_0

et
h4

_0

et
h5

_0

et
h6

_0

et
h7

_0

et
h8

_0

et
h9

_0

et
h2

_0

Fast
pathTCP/UDP

Termination

TCP/UDP
Application

Proxy

Fast path
socket API

©6WIND 2020 19

 6WINDGate TCP proxy application running on node under test

 Single port 80 is used (worst case)

 IXIA establishes connections until concurrent socket objective is
reached

 Once done, sockets are continuously opened and closed

 IXIA measures maximum number of sockets per second

 The test is successful when all sockets are opened and closed
correctly

Proxy Connection Rate Test

Client Proxy Server

one connection = 2 sockets

SYN

SYN-ACK

ACK

HTTP GET

HTTP OK (1B)

ACK

HTTP OK (1B)

ACK

FIN-ACK

FIN-ACK

SYN

SYN-ACK

ACK

HTTP GET

FIN-ACK

FIN-ACK

©6WIND 2020 20

 Up to 1M socket per second using 16 cores and 8M concurrent sockets
 All connections are established properly

 The number of concurrent connections impact is limited

Proxy Connection Rate Results

©6WIND 2020 21

 6WINDGate is running TCP proxy application
 Single port 80 is used (worst case)

 IXIA establishes connections until concurrent
socket objective is reached

 Once done, connections are continuously opened
and closed to create load
 The page size is 128 KB

 IXIA measures the throughput of the proxy

Proxy Bandwidth Test

Client Proxy Server

one connection = 2 sockets

SYN

SYN-ACK

ACK

HTTP GET

HTTP OK (128KB)

ACK

HTTP OK (128KB)

ACK

FIN-ACK

FIN-ACK

SYN

SYN-ACK

ACK

HTTP GET

FIN-ACK

FIN-ACK

©6WIND 2020 22

 Bandwidth performance remains stable with 8M active concurrent sockets
 Performance is limited by IXIA maximum capacity 40Gbps
 CPU usage decreases as more CPU resources are allocated

 Leaving more CPU resources available for application processing

Proxy Bandwidth Results

©6WIND 2020 23

 TCP socket rate

 Reported result is system TCP continuous socket open and close per second capacity

 TCP sockets are opened first to reach socket objective (10K to 8M sockets)

 Once objective is reached, sockets are continuously closed and opened at maximum rate

 The socket rate reported is the average rate measured

 TCP bandwidth

 Reported result is throughput received by IXIA

 TCP sockets are opened first to reach socket objective (10K to 2M+ sockets)

 New sockets opened are used for traffic emission and reception

 TCP transaction rate

 Reported result is system HTTP requests served per second

 TCP sockets are opened first to reach socket objective (10K to 2M+ sockets)

 Several requests (10) are processed by connection opened

 TCP latency

 Reported result is system latency to serve request first byte

 TCP sockets are opened first to reach socket objective (10k)

 Request rate is set to different values (1K to 1M TPS)

Server Benchmarks

et
h3

_0

et
h4

_0

et
h5

_0

et
h6

_0

et
h7

_0

et
h8

_0

et
h9

_0

et
h2

_0

Fast
pathTCP/UDP

Termination

TCP/UDP
Application

HTTP Server

Fast path
socket API

©6WIND 2020 24

 6WINDGate TCP HTTP 1.1 server application running on
node under test
 Single port 80 is used (worst case)

 IXIA establishes connections until concurrent socket
objective is reached

 Once done, sockets are continuously opened and closed

 IXIA measures the maximum number of sockets per
second

Server Connection Rate Test

Client Server

HTTP OK (1B)

ACK

FIN-ACK

FIN-ACK

SYN

SYN-ACK

ACK

HTTP GET

one connection

©6WIND 2020 25

 Up to 1.47M sockets per second using 16 cores and 6M concurrent sockets
 All connections are established properly

 The number of concurrent connections impact is limited

Server Connection Rate Results

©6WIND 2020 26

 6WINDGate is running TCP HTTP 1.1 server
application
 Single port 80 is used (worst case)

 IXIA establishes connections until concurrent
socket objective is reached

 Once done, sockets are continuously opened and
closed to create load
 The page size is 128 KB

 IXIA measures the throughput of the server

Server Bandwidth Test

Client Server

HTTP OK (128KB)

ACK

FIN-ACK

FIN-ACK

SYN

SYN-ACK

ACK

HTTP GET

one connection

©6WIND 2020 27

 Bandwidth performance remains stable with 4M active concurrent sockets
 Performance is limited by IXIA maximum capacity 40Gbps
 CPU usage decreases as more CPU resources are allocated

 Leaving more CPU resources available for application processing

Server Bandwidth Results

©6WIND 2020 28

 6WINDGate TCP HTTP 1.1 server application running on node under
test

 Single port 80 is used (worst case)

 IXIA establishes connections until concurrent socket objective is
reached

 Once done, multiple requests are sent by client to server

 IXIA measures the maximum number of transactions per second
and the time to first byte (TTFB)

 The test is successful when all requests are served correctly

 Latency is measured by IXIA between the emission of HTTP GET and the
first byte reception of the response

Maximum TPS measured is 7.1 M

Minimum measured latency is 24 µs

Server Transaction Rate and Latency

Client Server

HTTP OK (1B)

ACK

FIN-ACK

FIN-ACK

SYN

SYN-ACK

ACK

HTTP GET
one request

HTTP OK (1B)
HTTP GET

one request

Latency TTFB

Latency TTFB

©6WIND 2020 31

 Evaluation package available to replay
benchmarks

 TCP Boost Evaluation Package
documentation

 6WINDGate modules in binary code
 6WIND Proxy and Server demo applications

in source code

TCP Boost Evaluation Package

L2-L3 Fast Path

• Fast Path Baseline
• Forwarding IPv4
• Reassembly IPv4
• Flow Inspection / Packet Capture

for easy debugging

Linux /
Fast
Path
Sync

Linux
Kernel

Fast Path
TCP/UDP

Termination

Fast Path
Socket Integration Layer

Fast Path
TLS/DTLS

6WIND TCP Proxy & Server
Demo Applications

©6WIND 2020 33

 TCP Boost Software Package
 Ready-to-use set of 6WINDGate modules bundled with consulting services

 A la carte 6WINDGate modules

6WINDGate TCP Offering

Fast Path

Linux / Fast Path Synchronization

6WINDGate DPDK

Flow
Inspection

MPLS/VPLS
Encapsulation

Link
AggregationVLAN Ethernet

Bridging
Filtering
Ethernet
Bridging

OVS
Acceleration

GREIPv4/IPv6
Reassembly

IPv4/IPv6
Multicast

IPv4/IPv6
Forwarding

Tunneling
(IPinIP)NATFiltering

IPv4/IPv6 QoS

IPsec
IPv4/IPv6 VXLAN L2TP/PPPoE

BRAS GTP-U
IPsec
SVTI

Policy-based
Routing

Filtering
Conntracks

Netflow
IPFIX

TCP/UDP
Termination

FPN - SDK

TCP Boost
Software Package

TLS/DTLS

©6WIND 2020 34

 6WINDGate UDP/TCP Termination IPv4
(License)
 6WINDGate DPDK and FPN-SDK for Intel

 Fast Path Baseline

 Forwarding IPv4

 Reassembly IPv4

 Flow Inspection / Packet Capture for easy
debugging

 Linux - Fast Path Synchronization

 TCP/UDP Termination IPv4

 TCP/UDP Termination TLS/DTLS add-on

 Add-On License for UDP/TCP Termination
IPv6
 Forwarding IPv6

 Reassembly IPv6

 TCP/UDP Termination add-on IPv6

 Services
 Training (3 days)

 Engineering Consulting Services (10 days)

 One Year of Maintenance included in License

TCP Boost Software Packages

©6WIND 2020 36

 It is not a NetBSD port on fast path (like Rump)
 Would be reusing BSD lock based data structures

 Suffers from design bottlenecks

 accept() would be running on one core and would limit CPS performance

 Not written from scratch

 6WIND reused *BSD design flow but rewrote code to scale with multicore architectures to
 Get benefits from a widely deployed TCP stack

 Minimize CPU cycles per packet

 Remove blocking calls, it is event callback based

 Remove BSD bottlenecks

 accept() is running on multiple cores

6WINDGate TCP/UDP Termination - Stack Design

©6WIND 2020 37

FP_NONE

fp_ether_input

fp_ip_input

fp_ip_input_demux

tcp_input

fp_ip_input_local

FP_NONE

• wrong IP checksum
• Etc.

FP_NONE

• Local delivery
• Etc.

• Ethertype is not IPv4 or IPv6

• Route lookup

• IPsec (AH, ESP)
• NAT Traversal
• Input Filtering
• Xin4

• Enter the TCP stack

• Remove Ethernet
header

6WINDGate TCP/UDP Termination - Ingress

FP_NONE

• wrong TCP flag• New connection
• Read event
• Write event

fp_so_recv_zc()

FP_NONE

• IP protocol is not TCP or UDP

• Fast path packet processing

• Exception triggering

• Packet tagging

• Packet tagging

• Packet tagging

• Packet tagging

• Packet tagging

• Packet tagging

Fast path
processing

TCP
application
processing • Packet tags are

available in application

©6WIND 2020 38

FP_NONE

tcp_output

fp_ip_route_
and_output

fp_ether_output

fp_send_packet

fp_ip_output

FP_NONE

• No route entry is found for
destination

• Etc.

• Socket family is not AF_INET

• Route lookup
• Update TCP checksum

• Mark ARP entry
reachable

• Decrement TTL

• Add Ethernet header

• Add TCP header

6WINDGate TCP/UDP Termination - Egress

fp_so_send_zc()

• Parse packet tags

• Parse packet tags

• Parse packet tags

• Parse packet tags

Fast path
processing

TCP
application
processing

• Packet tagging

• Fast path packet processing

• Exception triggering

• Packet tagging

©6WIND 2020 39

 Application is running on the dedicated fast
path cores

 Data is provided to the application through
an optimized fast path TCP/UDP socket
implementation
 minimal TCP/UDP applications re-design using fast

path socket API

 Performance is maximized
 Zero-copy can be used to share buffers between

fast path and TCP application

 Latency of socket calls is minimized

6WINDGate TCP/UDP Termination - Fast Path Socket

Fast path

TCP/UDP
Termination

TCP/UDP
Application

(ex: load balancer)

Fast path
socket API

©6WIND 2020 40

 System calls vs. callback functions
 For scalability, 6WINDGate TCP termination introduces callback functions in case of:

 New connections

 Read events

 Write events

 Those callbacks replace the following system calls:
 select()

 poll()

 epoll_wait()

6WINDGate TCP/UDP Termination - Fast Path Socket

©6WIND 2020 41

 Fast path socket API is similar to standard Linux socket API:
 fp_so_socket()

 fp_so_close()

 fp_so_send() / fp_so_send_zc() / fp_so_sendto() / fp_so_sendto_zc()

 fp_so_recv() / fp_so_recvfrom() / fp_so_recv_zc() / fp_so_recvfrom_zc()

 fp_so_bind()

 fp_so_connect()

 fp_so_listen()

 fp_so_accept()

 fp_so_getpeername()

 fp_so_getsockname()

 fp_so_getsockopt()

 fp_so_setsockopt()

6WINDGate TCP/UDP Termination - Fast Path Socket

©6WIND 2020 42

 6WINDGate TCP/UDP termination provides copy and zero-copy APIs

 Read/Write copy mode
 Returns a message buffer structure

 Linear buffers

 send() / recv() API

 Read/Write zero-copy mode
 Returns a pointer to the message buffer structure

 Scatter/Gather buffers : one vectored I/O read or write can replace many ordinary reads or writes

 Faster than copy mode

 send_zc() / recv_zc() API

 Why should we use copy mode?
 It allows to reuse existing malloc/free existing code with no modification.

6WINDGate TCP/UDP Termination - Fast Path Socket Buffer
Handling

©6WIND 2020 43

tcp_server_app_init() {

}

 TCP application:
server socket initialization

 Create fast path TCP socket

 Listen on a socket for a given IP address and
port

 Register a callback function, called by the
TCP termination module when receiving a
new connection request
 Replace a blocking accept() call

6WINDGate TCP/UDP Termination - Fast Path Socket - Server

fp_so_socket()

fp_so_bind()

fp_so_listen()

fp_so_event_add
(new_connection_callback)

©6WIND 2020 44

new_connection_callback() {

}

 Called by the TCP termination module when a new
connection occurs

 Called as soon as the syn/syn_ack/ack is done

 Accept connection

 Register callback functions for read and write events:
 Read event callback called when data is available to be read on

the socket

 Write event callback called when data can be sent on the socket

 No select()/poll()/epoll()

 replaced by r/w callbacks comparable to libevent

6WINDGate TCP/UDP Termination - Fast Path Socket - Server

fp_so_accept(&newfd)

fp_so_event_add(newfd,
write_event_callback)

fp_so_event_add(newfd,
read_event_callback)

©6WIND 2020 45

tcp_client_app_init() {

}

 TCP application: client socket initialization

 Create fast path TCP socket

 Connect to a socket with a given IP address and port

 Register callback functions for read and write events
 Read event callback called when data is available to be read on the

socket

 Write event callback called when data can be sent on the socket

 No select()/poll()/epoll(): replaced by r/w callbacks

6WINDGate TCP/UDP Termination - Fast Path Socket - Client

fp_so_socket()

fp_so_connect()

fp_so_event_add
(write_event_callback)

fp_so_event_add
(read_event_callback)

©6WIND 2020 46

 TCP application: socket read event

 Called as soon as there is data on a socket

 Read data on the socket

 Return a pointer on a mbuf containing the data

6WINDGate TCP/UDP Termination - Fast Path Socket - Client and
Server

read_event_callback() {

}

fp_so_recv_zc()

user_read_process
(struct mbuf *m)

©6WIND 2020 47

 TCP application: socket write event

 Send data (as a mbuf) on the socket

 Called as soon as data can be sent on a
socket.

6WINDGate TCP/UDP Termination - Fast Path Socket - Client and
Server

write_event_callback() {

}

user_write_process
(struct mbuf *m)

fp_so_send_zc()

	6WINDGate TCP
	6WIND Mission – Democratize Networking
	6WIND Software for High Performance Networking
	6WINDGate Solution For High Performance TCP-Based Applications
	The TCP Problem
	SSL Inspection for Cyber Threat Protection
	6WINDGate High Performance TCP Proxy For SSL Inspection
	Test and Measurement Solutions for TCP Networks
	6WINDGate High Performance TCP Stack For Test And Measurement Solutions
	6WINDGate TCP - Product Presentation �
	Accelerated Layer 2-4 Stacks Synchronized with Linux
	6WINDGate TCP/UDP Termination
	6WINDGate TCP Implementation
	Architecture
	Architecture
	6WINDGate TCP Features Details
	Benchmarks Platform
	Proxy Benchmarks
	Proxy Connection Rate Test
	Proxy Connection Rate Results
	Proxy Bandwidth Test
	Proxy Bandwidth Results
	Server Benchmarks
	Server Connection Rate Test
	Server Connection Rate Results
	Server Bandwidth Test
	Server Bandwidth Results
	Server Transaction Rate and Latency
	TCP Boost Evaluation Package
	6WINDGate TCP Offering
	6WINDGate TCP Offering
	TCP Boost Software Packages
	6WINDGate TCP – Implementation
	6WINDGate TCP/UDP Termination - Stack Design
	6WINDGate TCP/UDP Termination - Ingress
	6WINDGate TCP/UDP Termination - Egress
	6WINDGate TCP/UDP Termination - Fast Path Socket
	6WINDGate TCP/UDP Termination - Fast Path Socket
	6WINDGate TCP/UDP Termination - Fast Path Socket
	6WINDGate TCP/UDP Termination - Fast Path Socket Buffer Handling
	6WINDGate TCP/UDP Termination - Fast Path Socket - Server
	6WINDGate TCP/UDP Termination - Fast Path Socket - Server
	6WINDGate TCP/UDP Termination - Fast Path Socket - Client
	6WINDGate TCP/UDP Termination - Fast Path Socket - Client and Server
	6WINDGate TCP/UDP Termination - Fast Path Socket - Client and Server
	Thank You

