

©6WIND 2020 2

 There are two options to achieve the integration of a high performance isolated Fast Path with Linux
Control and Management Planes
1. Redesign how Control and Management Planes interact with the Data Plane

 Requires a significant amount of work to adapt and validate a large number of complex protocols

 Used by VPP

2. Rely on the design of a Linux-friendly Data Plane to let the Fast Path act as a transparent solution to Linux

 No change to existing Linux Control and Management Planes

 Need for smart collaboration between Linux Networking Stack and Fast Path

 This second option has been successfully implemented in 6WINDGate using Linux - Fast Path
synchronization, taking advantage from the powerful networking capabilities of Linux eBPF

Integration Of Fast Path With Control And Management Planes

©6WIND 2020 3

 Existing Linux applications are not
modified and developing new
applications is pure Linux development

 Compatible with third-party open source
or commercial Control Plane applications
that configure Linux (routing, IKE, ...)

 Linux management tools can be re-used
(iproute, iptables, ipset, brctl, ovs-*ctl,
tcpdump, etc.)

 Leverage eBPF to make Fast Path
transparent to applications

Seamless Integration With Linux

Linux Running 6WINDGate is Linux

Data Plane

Linux Kernel

Control Plane

Management

©6WIND 2020 4

Management Plane

Linux
Networking

Stack

Control
Plane

Exceptions And Continuous Synchronization

Fast
Path?local

info

local
info

©6WIND 2020 5

Fast
Path

Linux
Networking

Stack

Exceptions And Continuous Synchronization

?local
info

local
info

Fast Path Packet

Management Plane

Control
Plane

©6WIND 2020 6

Fast
Path

Linux
Networking

Stack

Exceptions And Continuous Synchronization

?local
info

local
info

Fast Path Packet

Exception
Packet

Management Plane

Control
Plane

©6WIND 2020 7

Fast
Path

Linux
Networking

Stack

Exceptions And Continuous Synchronization

?local
info

local
info

Fast Path Packet

Exception
Packet

Management Plane

Control
Plane

©6WIND 2020 8

Management Plane

Fast
Path

Linux
Networking

Stack

Control
Plane

Exceptions And Continuous Synchronization

?local
info

local
info

Synchronization
module

Fast Path Packet

Exception
Packet

©6WIND 2020 9

Management Plane

Fast
Path

Linux
Networking

Stack

Control
Plane

Exceptions And Continuous Synchronization

?local
info

local
info

Synchronization
module

Fast Path Packet

Continuous
Synchronization

Exception
Packet

©6WIND 2020 10

Synchronization
Modules

Linux Networking Stack

6WINDGate Main Components

Management
Plane

Basic exception

Special
exception

nic0 nic1

Fast Path

DPDK

NETLINK

Packets that are too complex
to be processed by the Fast

Path (exceptions) are
reinjected in the Linux

Networking Stack directly or
using an eBPF program

Dedicated optimized
userland Data Plane

running on top of
DPDK

As a result, unmodified Linux applications
transparently use the accelerated Data

Plane as a standard Linux stack

eBPF

Linux Networking Stack and
Fast Path states are

synchronized in a shared
memory using Netlink

Eth-nic1Eth-nic0

Control Plane
Shared
Memory

©6WIND 2020 11

1. Fast Path
 Fast Path modules on top of DPDK
 Process Linux TX packets
 Read configuration from shared memory

and store usage and statistics

 Exception path
 Basic RX for packets unmodified by Fast

Path

 Special RX with eBPF for injecting
packets modified by Fast Path in Linux
Networking Stack

 Synchronization
 Netlink monitoring to reflect kernel

configuration into the shared memory

 FPS / Hitflags to update kernel states from
shared memory

6WINDGate Detailed Architecture

1

2

Linux
Networking
Stack

3

ARP, conntracks, …

3

Synchronization
Modules

NETLINK

FPS
Hitflags

Eth-nic0 Eth-nic1

TX
Linux

TUN/TAP

Fast Path

nic0 nic1

Tcpdump, input(),…
Special
exception

eBPF

Basic exception

2

AF_PACKET

Fast Path
Manager

Shared
Memory

FPCCache
Manager

Fast Path Modules

IP forwarding, IPsec,
NAT, VLAN, GRE,

MPLS, OVS…

NETFPC

FPN-SDK

1

FPVI DPDK

©6WIND 2020 12

1. Fast Path
 Fast Path modules on top of DPDK
 Process Linux TX packets
 Read configuration from shared memory

and store usage and statistics

 Exception path
 Basic RX for packets unmodified by Fast

Path

 Special RX with eBPF for injecting
packets modified by Fast Path in Linux
Networking Stack

 Synchronization
 Netlink monitoring to reflect kernel

configuration into the shared memory

 FPS / Hitflags to update kernel states from
shared memory

6WINDGate Detailed Architecture

1

2

Linux
Networking
Stack

3

ARP, conntracks, …

3

Synchronization
Modules

NETLINK

FPS
Hitflags

Eth-nic0 Eth-nic1

TX
Linux

TUN/TAP

Fast Path

nic0 nic1

Tcpdump, input(),…
Special
exception

eBPF

Basic exception

2

AF_PACKET

Fast Path
Manager

Shared
Memory

FPCCache
Manager

Fast Path Modules

IP forwarding, IPsec,
NAT, VLAN, GRE,

MPLS, OVS…

NETFPC

FPN-SDK

1

FPVI DPDK

©6WIND 2020 13

 All packets are received by the Fast Path, but some
are delegated to Linux
 Local destination

 Missing processing information in Shared Memory (ARP,
IPsec SA, etc.)

 Unaccelerated protocol

 Exceptions are sent to Linux
 Basic exceptions for standard processing are sent to a

TUN/TAP Linux driver

 Special exceptions for packets that have been
preprocessed by the Fast Path are injected at the right
place into the Linux Networking Stack thanks to an eBPF
program

 Packets are then processed by the Linux
Networking Stack
 Missing information (ARP, IPsec SA, etc.) is resolved by

Linux and will be synchronized to the Fast Path (see next
slides)

 Benefits
 Complete networking stack, relying on Linux for

unaccelerated protocols

 Fast Path benefits from rich Linux Control Plane, no need to
develop or change Control Plane daemons

 No change to Linux

Exception Strategy

©6WIND 2020 14

 Packets intended at Control Plane
 ICMP echo requests

 Control Plane daemons (BGP, OSPF, IKE, etc.)

 …

 Missing info to process packet
 No L3 route available

 No L2 address available for destination/gateway

 No IPsec info (SP/SA)

 Missing conntrack info

 …

 Protocols delegated to Linux
 ARP/NDP

 ICMP stack (TTL expiration)

 …

Exception Cases

Linux
Networking

Stack

Fast
Path?local

info

local
info

Fast Path Packet

Exception
Packet

©6WIND 2020 15

 Basic exceptions
 Default case

 Original packet sent to the Linux Networking Stack

 Restore IPv4/IPv6 headers, L2 headers

 Examples

 ARP resolution is missing after route lookup during
forwarding

 Local delivery: packet destination is local host e.g. a SSH
packet

 Special exceptions
 Original packet cannot be restored: Fast Path already

processed some headers

 Inner packet goes through an eBPF program in Linux to
inject it at the right place in the Linux Networking Stack

 Specific FPTUN trailer is added to the packet to indicate
where to inject the packet

 Examples

 Local delivery of OSPF packet to the control the plane
routing after GRE decapsulation done in Fast path

 Missing conntrack after VLAN decapsulation don in Fast
path

 Request to give packets to “tcpdump”

Exception Types

©6WIND 2020 16

 History
 BPF: Berkeley Packet Filter

 Assembly-like language initially developed for BSD systems

 Filter packets in the kernel to avoid useless copies to user-space (e.g. tcpdump)

 eBPF: extension of BPF for Linux with new points of attachment, function calls and performance improvements

 Usage
 Originally used for kernel tracing and event tracing

 Extended for network filtering (Anti-DDos), hardware modeling, using XDP hooks

 Programming
 Written in C-like

 Kernel uapi/linux/bpf.h includes API to manipulate the packet

 Translated into eBPF assembly instructions by LLVM compiler

 Loaded, verified, JIT compiled, and executed in kernel

What Is eBPF?

©6WIND 2020 17

 Initialization
 FPTUN handler eBPF program loaded and attached

to dummy interface

 Fast Path
 Ethernet / IP / GRE processing

 Local delivery: adding FPTUN trailer with “gre0”
index and sending it over dummy interface

 eBPF
 Packet goes through TC egress hook

 After parsing, trailer removal, packet is redirected to
gre0 interface

Example Of eBPF Usage In 6WINDGate: Inner GRE Local Delivery

Linux networking stack

Fast Path

dummy0

FPTUN hdlr
GRE

App

nic

IP TCP…
Eth | IP | GRE | IP TCP…

__section("tc_fptun_ebpf")
int _tc_fptun_ebpf(struct __sk_buff *skb)
{

bpf_skb_load_bytes(skb, off, &fptunebpf, sizeof(struct fptunebpf))
ifindex = _ntohl(fptunebpf.fptunebpf_ifid);
bpf_skb_change_tail(skb, off, 0)
return bpf_redirect(ifindex, BPF_F_INGRESS);

}

IP TCP…| FPTUN(id)

gre0

©6WIND 2020 18

 On running tcpdump
 BPF filter sync’d in Fast Path to filter packets to tap

 eBPF:

 FPTUN handler is attached to dummy

 drop attached to eth0

 Fast Path
 Forwarding

 On BPF match, send a copy to exception path, but Linux Networking
Stack must not process it

 eBPF
 Packet is marked

 Linux delivers to “tcpdump” socket and to eth0

 Marked packet is dropped to avoid processing by Linux Networking
Stack

Example Of eBPF Usage In 6WINDGate: tcpdump

__section("tc_fptun_ebpf")
int _tc_fptun_ebpf(struct __sk_buff *skb)
{

mark(skb);
return bpf_redirect(ifindex, BPF_F_INGRESS);

}
__section("tap_drop")
int _tap_drop(struct __sk_buff *skb)
{

if is-marked(skb) return TC_ACT_SHOT;
return TC_ACT_OK;

}

Linux networking stack

Fast Path
Tcpdump –i eth0 tcp port 80

drop

nic0 nic1

Eth | IP | TCP … |FASTPATH OFFLOAD|

Eth | IP | TCP …

BPF match

eth0

BPF match

dummy0

FPTUN hdlr
mark

©6WIND 2020 19

1. Fast Path
 Fast Path modules on top of DPDK
 Process Linux TX packets
 Read configuration from shared memory

and store usage and statistics

 Exception path
 Basic RX for packets unmodified by Fast

Path

 Special RX with eBPF for injecting
packets modified by Fast Path in Linux
Networking Stack

 Synchronization
 Netlink monitoring to reflect kernel

configuration into the shared memory

 FPS / Hitflags to update kernel states from
shared memory

6WINDGate Detailed Architecture

1

2

Linux
Networking
Stack

3

ARP, conntracks, …

3

Synchronization
Modules

NETLINK

FPS
Hitflags

Eth-nic0 Eth-nic1

TX
Linux

TUN/TAP

Fast Path

nic0 nic1

Tcpdump, input(),…
Special
exception

eBPF

Basic exception

2

AF_PACKET

Fast Path
Manager

Shared
Memory

FPCCache
Manager

Fast Path Modules

IP forwarding, IPsec,
NAT, VLAN, GRE,

MPLS, OVS…

NETFPC

FPN-SDK

1

FPVI DPDK

©6WIND 2020 20

 Based on two applications
 Cache Manager (CM): cmgrd executable

 Fast Path Manager (FPM): fpmd executable

 Local or remote communication between CM and FPM is done by the Fast Path Control API (FPC API)

 Full synchronization path
 CM -> FPC -> FPM

 FPM -> Shared Memory

 FPM -> NETFPC -> Fast Path

Configuration Synchronization Between Linux and Fast Path

Fast Path
Manager

Shared
Memory

Cache
Manager

Fast Path Modules

IP forwarding, IPsec,
NAT, VLAN, GRE,

MPLS, OVS…

NETFPC

NETLINK

FPC

©6WIND 2020 21

 Part of the Linux Fast Path Synchronization module

 Runs as a Linux userland application

 Listens to the Netlink socket, for kernel internal states (Control Plane and configuration updates)

 Transforms Netlink messages into FPC messages

 Control Plane modules (routing, IKE, PPP…) are not modified

Synchronization: Cache Manager (CM)

©6WIND 2020 22

 FPC API
 Interface between Cache Manager and Fast Path Manager

 Defines the exchange protocol and the structures of the configuration messages exchanged between the Cache
Manager and the Fast Path Manager

 Dedicated protocol
 UNIX or TCP socket

 client/server

 Common header

 Type, sequence number (SN), report, length

Synchronization: FPC API

©6WIND 2020 23

 Part of the Linux Fast Path synchronization module

 Runs as a Linux userland application

 Translates FPC API messages to configure Fast Path modules using
 Read / write Shared Memory

 Send / receive notifications to / from Fast Path through NETFPC

Synchronization: Fast Path Manager (FPM)

©6WIND 2020 24

 Contains structures for
 Physical ports

 Forwarding table

 Statistics

 IPsec databases

 etc.

 Read/write access for
 FPM: writes local information received from CM through FPC messages

 Fast Path: reads local information used for packet processing (L2/L3 entries, IPsec SAs, etc.) and writes statistics

 FPS: reads statistics

 Allocation is specific to processor architecture, contents are generic
 POSIX shmem implementation

Synchronization: Shared Memory

©6WIND 2020 25

 RPC-like API to trigger an event from Linux to Fast Path
 Useful to get a function being called in Fast Path execution environment, typically to change NIC settings via the Fast

Path drivers

 Examples

 Set the MTU on an interface (the Fast Path owns the drivers)

 Configure MAC filtering

 Enable promiscuous mode

 Implemented as a communication socket between FPM and Fast Path
 Point to point communication with socket API: open(), recv(), send(), close()

 Default is UNIX socket transport, or IPv6 RAW for non-userspace Fast Path

Synchronization: NETFPC

©6WIND 2020 26

 Virtual Routing and Forwarding (VRF): IP technology that allows multiple instances of a routing table to work
simultaneously within the same router

 6WINDGate provides support for Virtual Routing and Forwarding (VRF) in all Fast Path modules

 In Linux, VRFs are configured using network namespaces (netns)

 The Linux / Fast Path Synchronization - VRF module implements synchronization of Linux netns to Fast Path
VRFs
 Userland API: libvrf

 This library allows to manage and monitor 6WINDGate VRFs from any Linux userland process

 Cache Manager makes use of libvrf to synchronize netns-VRF in Fast Path VRF

Synchronization: VRF

©6WIND 2020 27

 Reports Fast Path statistics into the Linux Networking Stack
 Fast Path modules update the Shared Memory with statistics

 FPS daemon reads Shared Memory statistics periodically

 Statistics are updated in Linux Networking Stack via NETLINK e.g. XFRM family for IPsec

 Unfortunately the coverage is limited by the userspace API
 Currently no way to update per interface statistics, or IP MIB

 Helper to fetch statistics
 Well-known tools like iproute2, SNMP, bmon use NETLINK to get statistics

 FPS provides a library transparently catching NETLINK requests for statistics (IFLA_STATS attribute) and updating the
answer with Fast Path statistics

Synchronization: Fast Path Statistics (FPS)

©6WIND 2020 28

 When packets go through the Fast Path, the kernel object states are not updated
 Fast path relies on Linux slow path for ARP, conntracks

 When not used, these entries will expire and get removed by Linux

 The synchronization will raise periodic waves of packet exceptions

 The Fast Path Hitflags daemon is in charge of updating the kernel states
 Fast Path module writes the hitflag field into the Shared Memory when the entry is used

 Hitflags daemon scans the Shared Memory entries (ARP for example) periodically

 Entries marked by Fast Path are updated in Linux Networking Stack via NETLINK

 Packets flow now keeps steady in Fast Path
 In-use entries in Fast Path remain alive in Linux

Synchronization: Hitflags

	6WINDGate Exceptions and Linux - Fast Path Synchronization�
	Integration Of Fast Path With Control And Management Planes
	Seamless Integration With Linux
	Exceptions And Continuous Synchronization
	Exceptions And Continuous Synchronization
	Exceptions And Continuous Synchronization
	Exceptions And Continuous Synchronization
	Exceptions And Continuous Synchronization
	Exceptions And Continuous Synchronization
	6WINDGate Main Components
	6WINDGate Detailed Architecture
	6WINDGate Detailed Architecture
	Exception Strategy
	Exception Cases
	Exception Types
	What Is eBPF?
	Example Of eBPF Usage In 6WINDGate: Inner GRE Local Delivery
	Example Of eBPF Usage In 6WINDGate: tcpdump
	6WINDGate Detailed Architecture
	Configuration Synchronization Between Linux and Fast Path
	Synchronization: Cache Manager (CM)
	Synchronization: FPC API
	Synchronization: Fast Path Manager (FPM)
	Synchronization: Shared Memory
	Synchronization: NETFPC
	Synchronization: VRF
	Synchronization: Fast Path Statistics (FPS)
	Synchronization: Hitflags

