

©6WIND 2020 2

 There are two options to achieve the integration of a high performance isolated Fast Path with Linux
Control and Management Planes
1. Redesign how Control and Management Planes interact with the Data Plane

 Requires a significant amount of work to adapt and validate a large number of complex protocols

 Used by VPP

2. Rely on the design of a Linux-friendly Data Plane to let the Fast Path act as a transparent solution to Linux

 No change to existing Linux Control and Management Planes

 Need for smart collaboration between Linux Networking Stack and Fast Path

 This second option has been successfully implemented in 6WINDGate using Linux - Fast Path
synchronization, taking advantage from the powerful networking capabilities of Linux eBPF

Integration Of Fast Path With Control And Management Planes

©6WIND 2020 3

 Existing Linux applications are not
modified and developing new
applications is pure Linux development

 Compatible with third-party open source
or commercial Control Plane applications
that configure Linux (routing, IKE, ...)

 Linux management tools can be re-used
(iproute, iptables, ipset, brctl, ovs-*ctl,
tcpdump, etc.)

 Leverage eBPF to make Fast Path
transparent to applications

Seamless Integration With Linux

Linux Running 6WINDGate is Linux

Data Plane

Linux Kernel

Control Plane

Management

©6WIND 2020 4

Management Plane

Linux
Networking

Stack

Control
Plane

Exceptions And Continuous Synchronization

Fast
Path?local

info

local
info

©6WIND 2020 5

Fast
Path

Linux
Networking

Stack

Exceptions And Continuous Synchronization

?local
info

local
info

Fast Path Packet

Management Plane

Control
Plane

©6WIND 2020 6

Fast
Path

Linux
Networking

Stack

Exceptions And Continuous Synchronization

?local
info

local
info

Fast Path Packet

Exception
Packet

Management Plane

Control
Plane

©6WIND 2020 7

Fast
Path

Linux
Networking

Stack

Exceptions And Continuous Synchronization

?local
info

local
info

Fast Path Packet

Exception
Packet

Management Plane

Control
Plane

©6WIND 2020 8

Management Plane

Fast
Path

Linux
Networking

Stack

Control
Plane

Exceptions And Continuous Synchronization

?local
info

local
info

Synchronization
module

Fast Path Packet

Exception
Packet

©6WIND 2020 9

Management Plane

Fast
Path

Linux
Networking

Stack

Control
Plane

Exceptions And Continuous Synchronization

?local
info

local
info

Synchronization
module

Fast Path Packet

Continuous
Synchronization

Exception
Packet

©6WIND 2020 10

Synchronization
Modules

Linux Networking Stack

6WINDGate Main Components

Management
Plane

Basic exception

Special
exception

nic0 nic1

Fast Path

DPDK

NETLINK

Packets that are too complex
to be processed by the Fast

Path (exceptions) are
reinjected in the Linux

Networking Stack directly or
using an eBPF program

Dedicated optimized
userland Data Plane

running on top of
DPDK

As a result, unmodified Linux applications
transparently use the accelerated Data

Plane as a standard Linux stack

eBPF

Linux Networking Stack and
Fast Path states are

synchronized in a shared
memory using Netlink

Eth-nic1Eth-nic0

Control Plane
Shared
Memory

©6WIND 2020 11

1. Fast Path
 Fast Path modules on top of DPDK
 Process Linux TX packets
 Read configuration from shared memory

and store usage and statistics

 Exception path
 Basic RX for packets unmodified by Fast

Path

 Special RX with eBPF for injecting
packets modified by Fast Path in Linux
Networking Stack

 Synchronization
 Netlink monitoring to reflect kernel

configuration into the shared memory

 FPS / Hitflags to update kernel states from
shared memory

6WINDGate Detailed Architecture

1

2

Linux
Networking
Stack

3

ARP, conntracks, …

3

Synchronization
Modules

NETLINK

FPS
Hitflags

Eth-nic0 Eth-nic1

TX
Linux

TUN/TAP

Fast Path

nic0 nic1

Tcpdump, input(),…
Special
exception

eBPF

Basic exception

2

AF_PACKET

Fast Path
Manager

Shared
Memory

FPCCache
Manager

Fast Path Modules

IP forwarding, IPsec,
NAT, VLAN, GRE,

MPLS, OVS…

NETFPC

FPN-SDK

1

FPVI DPDK

©6WIND 2020 12

1. Fast Path
 Fast Path modules on top of DPDK
 Process Linux TX packets
 Read configuration from shared memory

and store usage and statistics

 Exception path
 Basic RX for packets unmodified by Fast

Path

 Special RX with eBPF for injecting
packets modified by Fast Path in Linux
Networking Stack

 Synchronization
 Netlink monitoring to reflect kernel

configuration into the shared memory

 FPS / Hitflags to update kernel states from
shared memory

6WINDGate Detailed Architecture

1

2

Linux
Networking
Stack

3

ARP, conntracks, …

3

Synchronization
Modules

NETLINK

FPS
Hitflags

Eth-nic0 Eth-nic1

TX
Linux

TUN/TAP

Fast Path

nic0 nic1

Tcpdump, input(),…
Special
exception

eBPF

Basic exception

2

AF_PACKET

Fast Path
Manager

Shared
Memory

FPCCache
Manager

Fast Path Modules

IP forwarding, IPsec,
NAT, VLAN, GRE,

MPLS, OVS…

NETFPC

FPN-SDK

1

FPVI DPDK

©6WIND 2020 13

 All packets are received by the Fast Path, but some
are delegated to Linux
 Local destination

 Missing processing information in Shared Memory (ARP,
IPsec SA, etc.)

 Unaccelerated protocol

 Exceptions are sent to Linux
 Basic exceptions for standard processing are sent to a

TUN/TAP Linux driver

 Special exceptions for packets that have been
preprocessed by the Fast Path are injected at the right
place into the Linux Networking Stack thanks to an eBPF
program

 Packets are then processed by the Linux
Networking Stack
 Missing information (ARP, IPsec SA, etc.) is resolved by

Linux and will be synchronized to the Fast Path (see next
slides)

 Benefits
 Complete networking stack, relying on Linux for

unaccelerated protocols

 Fast Path benefits from rich Linux Control Plane, no need to
develop or change Control Plane daemons

 No change to Linux

Exception Strategy

©6WIND 2020 14

 Packets intended at Control Plane
 ICMP echo requests

 Control Plane daemons (BGP, OSPF, IKE, etc.)

 …

 Missing info to process packet
 No L3 route available

 No L2 address available for destination/gateway

 No IPsec info (SP/SA)

 Missing conntrack info

 …

 Protocols delegated to Linux
 ARP/NDP

 ICMP stack (TTL expiration)

 …

Exception Cases

Linux
Networking

Stack

Fast
Path?local

info

local
info

Fast Path Packet

Exception
Packet

©6WIND 2020 15

 Basic exceptions
 Default case

 Original packet sent to the Linux Networking Stack

 Restore IPv4/IPv6 headers, L2 headers

 Examples

 ARP resolution is missing after route lookup during
forwarding

 Local delivery: packet destination is local host e.g. a SSH
packet

 Special exceptions
 Original packet cannot be restored: Fast Path already

processed some headers

 Inner packet goes through an eBPF program in Linux to
inject it at the right place in the Linux Networking Stack

 Specific FPTUN trailer is added to the packet to indicate
where to inject the packet

 Examples

 Local delivery of OSPF packet to the control the plane
routing after GRE decapsulation done in Fast path

 Missing conntrack after VLAN decapsulation don in Fast
path

 Request to give packets to “tcpdump”

Exception Types

©6WIND 2020 16

 History
 BPF: Berkeley Packet Filter

 Assembly-like language initially developed for BSD systems

 Filter packets in the kernel to avoid useless copies to user-space (e.g. tcpdump)

 eBPF: extension of BPF for Linux with new points of attachment, function calls and performance improvements

 Usage
 Originally used for kernel tracing and event tracing

 Extended for network filtering (Anti-DDos), hardware modeling, using XDP hooks

 Programming
 Written in C-like

 Kernel uapi/linux/bpf.h includes API to manipulate the packet

 Translated into eBPF assembly instructions by LLVM compiler

 Loaded, verified, JIT compiled, and executed in kernel

What Is eBPF?

©6WIND 2020 17

 Initialization
 FPTUN handler eBPF program loaded and attached

to dummy interface

 Fast Path
 Ethernet / IP / GRE processing

 Local delivery: adding FPTUN trailer with “gre0”
index and sending it over dummy interface

 eBPF
 Packet goes through TC egress hook

 After parsing, trailer removal, packet is redirected to
gre0 interface

Example Of eBPF Usage In 6WINDGate: Inner GRE Local Delivery

Linux networking stack

Fast Path

dummy0

FPTUN hdlr
GRE

App

nic

IP TCP…
Eth | IP | GRE | IP TCP…

__section("tc_fptun_ebpf")
int _tc_fptun_ebpf(struct __sk_buff *skb)
{

bpf_skb_load_bytes(skb, off, &fptunebpf, sizeof(struct fptunebpf))
ifindex = _ntohl(fptunebpf.fptunebpf_ifid);
bpf_skb_change_tail(skb, off, 0)
return bpf_redirect(ifindex, BPF_F_INGRESS);

}

IP TCP…| FPTUN(id)

gre0

©6WIND 2020 18

 On running tcpdump
 BPF filter sync’d in Fast Path to filter packets to tap

 eBPF:

 FPTUN handler is attached to dummy

 drop attached to eth0

 Fast Path
 Forwarding

 On BPF match, send a copy to exception path, but Linux Networking
Stack must not process it

 eBPF
 Packet is marked

 Linux delivers to “tcpdump” socket and to eth0

 Marked packet is dropped to avoid processing by Linux Networking
Stack

Example Of eBPF Usage In 6WINDGate: tcpdump

__section("tc_fptun_ebpf")
int _tc_fptun_ebpf(struct __sk_buff *skb)
{

mark(skb);
return bpf_redirect(ifindex, BPF_F_INGRESS);

}
__section("tap_drop")
int _tap_drop(struct __sk_buff *skb)
{

if is-marked(skb) return TC_ACT_SHOT;
return TC_ACT_OK;

}

Linux networking stack

Fast Path
Tcpdump –i eth0 tcp port 80

drop

nic0 nic1

Eth | IP | TCP … |FASTPATH OFFLOAD|

Eth | IP | TCP …

BPF match

eth0

BPF match

dummy0

FPTUN hdlr
mark

©6WIND 2020 19

1. Fast Path
 Fast Path modules on top of DPDK
 Process Linux TX packets
 Read configuration from shared memory

and store usage and statistics

 Exception path
 Basic RX for packets unmodified by Fast

Path

 Special RX with eBPF for injecting
packets modified by Fast Path in Linux
Networking Stack

 Synchronization
 Netlink monitoring to reflect kernel

configuration into the shared memory

 FPS / Hitflags to update kernel states from
shared memory

6WINDGate Detailed Architecture

1

2

Linux
Networking
Stack

3

ARP, conntracks, …

3

Synchronization
Modules

NETLINK

FPS
Hitflags

Eth-nic0 Eth-nic1

TX
Linux

TUN/TAP

Fast Path

nic0 nic1

Tcpdump, input(),…
Special
exception

eBPF

Basic exception

2

AF_PACKET

Fast Path
Manager

Shared
Memory

FPCCache
Manager

Fast Path Modules

IP forwarding, IPsec,
NAT, VLAN, GRE,

MPLS, OVS…

NETFPC

FPN-SDK

1

FPVI DPDK

©6WIND 2020 20

 Based on two applications
 Cache Manager (CM): cmgrd executable

 Fast Path Manager (FPM): fpmd executable

 Local or remote communication between CM and FPM is done by the Fast Path Control API (FPC API)

 Full synchronization path
 CM -> FPC -> FPM

 FPM -> Shared Memory

 FPM -> NETFPC -> Fast Path

Configuration Synchronization Between Linux and Fast Path

Fast Path
Manager

Shared
Memory

Cache
Manager

Fast Path Modules

IP forwarding, IPsec,
NAT, VLAN, GRE,

MPLS, OVS…

NETFPC

NETLINK

FPC

©6WIND 2020 21

 Part of the Linux Fast Path Synchronization module

 Runs as a Linux userland application

 Listens to the Netlink socket, for kernel internal states (Control Plane and configuration updates)

 Transforms Netlink messages into FPC messages

 Control Plane modules (routing, IKE, PPP…) are not modified

Synchronization: Cache Manager (CM)

©6WIND 2020 22

 FPC API
 Interface between Cache Manager and Fast Path Manager

 Defines the exchange protocol and the structures of the configuration messages exchanged between the Cache
Manager and the Fast Path Manager

 Dedicated protocol
 UNIX or TCP socket

 client/server

 Common header

 Type, sequence number (SN), report, length

Synchronization: FPC API

©6WIND 2020 23

 Part of the Linux Fast Path synchronization module

 Runs as a Linux userland application

 Translates FPC API messages to configure Fast Path modules using
 Read / write Shared Memory

 Send / receive notifications to / from Fast Path through NETFPC

Synchronization: Fast Path Manager (FPM)

©6WIND 2020 24

 Contains structures for
 Physical ports

 Forwarding table

 Statistics

 IPsec databases

 etc.

 Read/write access for
 FPM: writes local information received from CM through FPC messages

 Fast Path: reads local information used for packet processing (L2/L3 entries, IPsec SAs, etc.) and writes statistics

 FPS: reads statistics

 Allocation is specific to processor architecture, contents are generic
 POSIX shmem implementation

Synchronization: Shared Memory

©6WIND 2020 25

 RPC-like API to trigger an event from Linux to Fast Path
 Useful to get a function being called in Fast Path execution environment, typically to change NIC settings via the Fast

Path drivers

 Examples

 Set the MTU on an interface (the Fast Path owns the drivers)

 Configure MAC filtering

 Enable promiscuous mode

 Implemented as a communication socket between FPM and Fast Path
 Point to point communication with socket API: open(), recv(), send(), close()

 Default is UNIX socket transport, or IPv6 RAW for non-userspace Fast Path

Synchronization: NETFPC

©6WIND 2020 26

 Virtual Routing and Forwarding (VRF): IP technology that allows multiple instances of a routing table to work
simultaneously within the same router

 6WINDGate provides support for Virtual Routing and Forwarding (VRF) in all Fast Path modules

 In Linux, VRFs are configured using network namespaces (netns)

 The Linux / Fast Path Synchronization - VRF module implements synchronization of Linux netns to Fast Path
VRFs
 Userland API: libvrf

 This library allows to manage and monitor 6WINDGate VRFs from any Linux userland process

 Cache Manager makes use of libvrf to synchronize netns-VRF in Fast Path VRF

Synchronization: VRF

©6WIND 2020 27

 Reports Fast Path statistics into the Linux Networking Stack
 Fast Path modules update the Shared Memory with statistics

 FPS daemon reads Shared Memory statistics periodically

 Statistics are updated in Linux Networking Stack via NETLINK e.g. XFRM family for IPsec

 Unfortunately the coverage is limited by the userspace API
 Currently no way to update per interface statistics, or IP MIB

 Helper to fetch statistics
 Well-known tools like iproute2, SNMP, bmon use NETLINK to get statistics

 FPS provides a library transparently catching NETLINK requests for statistics (IFLA_STATS attribute) and updating the
answer with Fast Path statistics

Synchronization: Fast Path Statistics (FPS)

©6WIND 2020 28

 When packets go through the Fast Path, the kernel object states are not updated
 Fast path relies on Linux slow path for ARP, conntracks

 When not used, these entries will expire and get removed by Linux

 The synchronization will raise periodic waves of packet exceptions

 The Fast Path Hitflags daemon is in charge of updating the kernel states
 Fast Path module writes the hitflag field into the Shared Memory when the entry is used

 Hitflags daemon scans the Shared Memory entries (ARP for example) periodically

 Entries marked by Fast Path are updated in Linux Networking Stack via NETLINK

 Packets flow now keeps steady in Fast Path
 In-use entries in Fast Path remain alive in Linux

Synchronization: Hitflags

	6WINDGate Exceptions and Linux - Fast Path Synchronization�
	Integration Of Fast Path With Control And Management Planes
	Seamless Integration With Linux
	Exceptions And Continuous Synchronization
	Exceptions And Continuous Synchronization
	Exceptions And Continuous Synchronization
	Exceptions And Continuous Synchronization
	Exceptions And Continuous Synchronization
	Exceptions And Continuous Synchronization
	6WINDGate Main Components
	6WINDGate Detailed Architecture
	6WINDGate Detailed Architecture
	Exception Strategy
	Exception Cases
	Exception Types
	What Is eBPF?
	Example Of eBPF Usage In 6WINDGate: Inner GRE Local Delivery
	Example Of eBPF Usage In 6WINDGate: tcpdump
	6WINDGate Detailed Architecture
	Configuration Synchronization Between Linux and Fast Path
	Synchronization: Cache Manager (CM)
	Synchronization: FPC API
	Synchronization: Fast Path Manager (FPM)
	Synchronization: Shared Memory
	Synchronization: NETFPC
	Synchronization: VRF
	Synchronization: Fast Path Statistics (FPS)
	Synchronization: Hitflags

