

©6WIND 2020 2

Synchronization
Modules

Linux Networking Stack

6WINDGate Main Components

Management
Plane

Basic exception

Special
exception

nic0 nic1

Fast Path

DPDK

NETLINK

Packets that are too complex
to be processed by the Fast

Path (exceptions) are
reinjected in the Linux

Networking Stack directly or
using an eBPF program

Dedicated optimized
userland Data Plane

running on top of
DPDK

As a result, unmodified Linux applications
transparently use the accelerated Data

Plane as a standard Linux stack

eBPF

Linux Networking Stack and
Fast Path states are

synchronized in a shared
memory using Netlink

Eth-nic1Eth-nic0

Control Plane
Shared
Memory

©6WIND 2020 3

1. Fast path
 Fast path modules on top of DPDK
 Process Linux TX packets
 Read configuration from shared memory

and store usage and statistics

 Exception path
 Basic RX for packets unmodified by fast

path

 Special RX with eBPF for injecting
packets modified by fast path in Linux
networking stack

 Synchronization
 Netlink monitoring to reflect kernel

configuration into the shared memory

 FPS / Hitflags to update kernel states from
shared memory

6WINDGate Detailed Architecture

1

2

Linux
Networking
Stack

3

ARP, conntracks, …

3

Synchronization
Modules

NETLINK

FPS
Hitflags

Eth-nic0 Eth-nic1

TX
Linux

TUN/TAP

Fast Path

nic0 nic1

Tcpdump, input(),…
Special
exception

eBPF

Basic exception

2

AF_PACKET

Fast Path
Manager

Shared
Memory

FPCCache
Manager

Fast Path Modules

IP forwarding, IPsec,
NAT, VLAN, GRE,

MPLS, OVS…

NETFPC

FPN-SDK

1

FPVI DPDK

©6WIND 2020 4

1. Fast path
 Fast path modules on top of DPDK
 Process Linux TX packets
 Read configuration from shared memory

and store usage and statistics

 Exception path
 Basic RX for packets unmodified by fast

path

 Special RX with eBPF for injecting
packets modified by fast path in Linux
networking stack

 Synchronization
 Netlink monitoring to reflect kernel

configuration into the shared memory

 FPS / Hitflags to update kernel states from
shared memory

6WINDGate Detailed Architecture

1

2

Linux
Networking
Stack

3

ARP, conntracks, …

3

Synchronization
Modules

NETLINK

FPS
Hitflags

Eth-nic0 Eth-nic1

TX
Linux

TUN/TAP

Fast Path

nic0 nic1

Tcpdump, input(),…
Special
exception

eBPF

Basic exception

2

AF_PACKET

Fast Path
Manager

Shared
Memory

FPCCache
Manager

Fast Path Modules

IP forwarding, IPsec,
NAT, VLAN, GRE,

MPLS, OVS…

NETFPC

FPN-SDK

1

FPVI DPDK

©6WIND 2020 5

 Hardware abstraction layer
 Northbound: FPN API for Fast Path modules

 Packet buffer (mbuf)

 Shared Memory (userland / fast path)

 FPVI: Linux interface abstraction

 Crypto with HW support and SW fallback

 Offloads: checksum, TCP (LRO, TSO)

 And more: Control Plane protection, fast and
scalable timers, memory pool and ring, lock and
synchronization, atomic operations, CPU usage
monitoring, function calls tracking for debugging,
inter-core packet distribution

 Southbound: hardware-specific SDK

FPN-SDK Packet Processing Library

FPN-SDK

Fast Path

FPN

mbuf shmem fpvi

crypto offloads mem, timers,
etc.

©6WIND 2020 6

 Generic software using the FPN-SDK generic API
 Same code used on supported hardware platforms

 High performance architecture
 Run to completion model with pipeline capabilities when

required (QoS…)

 Implement only simple features to process 99 % of the
traffic with maximum efficiency

 Complex processing for the rest of the traffic is delegated to
the Linux Networking Stack

 Optimized code
 Straightforward case optimized (if xxx_likely())

 Lockless, prefetch, cache usage

 Statistics are implemented per core to minimize
performance impact

 Fast algorithms
 Route lookup with 8/8/8/8 trie

 Security Policy Database lookup with automatic linear / trie
switching

 Load balancing of packets can be done (pipeline-hash
plugin) if not provided by hardware

 Use of hardware offloads abstracted by the FPN-
SDK API
 Packet forwarding / sanity checks

 Crypto, QoS….

Protocol Implementation: Fast Path Modules

©6WIND 2020 7

LAG

Packet Processing

DPDK pmd drivers

fp_process_input

rx ops defined

fp_ip_input

fp_vlan_i
nput

fp_macvlan_
input

is dst
local?

fp_ip_input_de
mux

fp_ip_output

fp_ether_output

fp_if_output

fp_ether_input

fp_mpls_inp
ut

fp_bridge_i
nput

fp_bonding
_slave_inp

ut

Bridge MPLS MACVLAN VLAN

Interface
type

Interface type

fpn_send_bulk

OVS

fpvs_ether
_input

tap

qos

tap

qos

Plugin

tap

qos

Plugin

PBR

Plugin

gro

Yes

No

fp_qos_schedule

QoS Advanced

fp_ip_if_send

npf_cgnat_
getnat fp_nf_nat fp_nf_hoo

k_iterate

CG-
NAT

NAT FilterCG-
FW

npf_packet
_handler

fp_ipsec_
output

IPsec

fp_xfrmi_o
utput

fp_xinx_ou
tput

fp_vxlan_o
utput

SVTI Tunnel VXLAN

MPLS LAG MACV
LAN

VLANBridge

fp_mpls_
output

fp_bonding
_output

fp_macvla
n_output

Fpvlan_ut
put

fp_bridge
output

port

TCP/UD
P

IPsec /
SVTI

VxLAN GRE Tunnel

fp_vxlan_in
put

fp_gre_inpu
t

fp_ipsec4_e
sp_hdlr

fp_tcp_ip4_
hdlr

fp_udp_ip4
_hdlr

fp_tunnel_X
in4_hdlr

Plugin

[D]TLS

fp_ssl_read

fp_gre_out
put

GRE

tap

qos

Plugin

©6WIND 2020 8

 Fast Path Virtual Interface
 Provides NIC representor in Linux for standard configuration (e.g. iproute2)

 Implemented using FPN-SDK

 For DPDK, it is using Linux tun/tap + DPDK PMD virtio-user

 Fast path -> Linux : receive exception path
 Basic exception: packets are sent unmodified to get a standard processing by the Linux Networking stack

 Special exception: packets have been preprocessed by the Fast Path and are injected at the right place into the Linux
Networking Stack, thanks to an eBPF program

 Linux -> Fast path : transmit exception path
 Packets are sent out the physical ports by the Fast Path which owns NIC drivers

Interface Between Fast Path And Linux Networking Stack: FPVI

©6WIND 2020 9

Packet Exception Processing

in_pcblookup_connectfp_send_exception

fpn_send_exception

fpn_fpvi_vhost_send

fpn_fpvi_send

fpn_process_soft_output

fpn_fpvi_vhost_input

fpn_main_loop

vhost_enqueue

tun_recvmsg

dev_queue_xmit

sock_sendmsg

netif_receive_skb

tun_sendmsg

vhost_poll_queue

bpf_prog_run

Linux Networking Stack processing

No

fp_sendmsg

Is it
basic

Yes

fp_send_fptunebpf

fp_send_nonbasic_exc

tc_filter

fp_process_linux_tx

bpf_redirect

Linux kernel

Fast Path

Input ?
No

Yes

©6WIND 2020 10

 To configure the NIC
 Get / Set NIC flow control

 Link speed

 Offloads

 To monitor the fast path
 Display statistics

 Display debugging information

 Command output is formatted in json

 API for extensions

Fast Path Commands: fp-cli

root@localhost:~# fp-cli iface
1:lo [VR-0] ifid=1 (virtual) <UP|RUNNING|FWD4|FWD6|MPLS> (0x3b)

type=loop mac=00:00:00:00:00:00 mtu=0 no numa tcp4mss=0 tcp6mss=0
IPv4 routes=0 IPv6 routes=0
if_ops: rx_dev=none rx_early=none tx_dev=none ip_output=none

3:dp0 [VR-0] ifid=3 (port 0) <UP|RUNNING|FWD4|FWD6|MPLS> (0x3b)
type=ether mac=de:ed:01:77:94:a2 mtu=1500 numa=0 tcp4mss=0 tcp6mss=0
IPv4 routes=2 IPv6 routes=0

(…)
root@localhost:~# fp-cli iface-json
[
{
"vrfid": 0,
"ifaces": [

{
"name": "lo",
"ifid": 1,
"mac": "00:00:00:00:00:00",
"vrfid": 0,
"mtu": 0,
"numa": "no numa",
"ipv4_routes": 0,
"ipv6_routes": 0,
"master": null,
"port": "virtual",
"type": "loop",
"flags": [
"up",
"running",
"fwd4",
"fwd6",
"mpls"

],

(…)

©6WIND 2020 12

6WINDGate IP Forwarding Example: Call Flow

fp_ether_input

fp_ip_input

fp_ether_output

fp_send_packet

fp_ip_output

FP_DONE

Exception

• wrong IP checksum, truncated / malformed IP header
• presence of IP options
• TTL <= 1
• reserved IP destination addresses

FP_DROP or Exception

Exception

• No route entry is found for destination
• Route entry is via a Linux Networking Stack / unknown

interface
• ICMP redirect needed
• Packet size > output interface MTU && DF set

• Ethertype is not IPv4

• Route lookup:
Customizable 16/8/8
trie

• Decrement TTL
• Update IP

checksum
• Mark ARP entry

reachable

• Add Ethernet header

• Remove Ethernet
header

• Fast Path packet
processing

• Exception triggering

	6WINDGate Fast Path Implementation��
	6WINDGate Main Components
	6WINDGate Detailed Architecture
	6WINDGate Detailed Architecture
	FPN-SDK Packet Processing Library
	Protocol Implementation: Fast Path Modules
	Packet Processing
	Interface Between Fast Path And Linux Networking Stack: FPVI
	Packet Exception Processing
	Fast Path Commands: fp-cli
	6WINDGate IP Forwarding Example: Call Flow

