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1. Fast path
 Fast path modules on top of DPDK
 Process Linux TX packets
 Read configuration from shared memory 

and store usage and statistics

 Exception path
 Basic RX for packets unmodified by fast 

path

 Special RX with eBPF for injecting 
packets modified by fast path in Linux 
networking stack

 Synchronization
 Netlink monitoring to reflect kernel 

configuration into the shared memory

 FPS / Hitflags to update kernel states from 
shared memory
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 Hardware abstraction layer
 Northbound: FPN API for Fast Path modules

 Packet buffer (mbuf)

 Shared Memory (userland / fast path)

 FPVI: Linux interface abstraction

 Crypto with HW support and SW fallback

 Offloads: checksum, TCP (LRO, TSO)

 And more: Control Plane protection, fast and 
scalable timers, memory pool and ring, lock and 
synchronization, atomic operations, CPU usage 
monitoring, function calls tracking for debugging, 
inter-core packet distribution

 Southbound: hardware-specific SDK

FPN-SDK Packet Processing Library

FPN-SDK

Fast Path

FPN

mbuf shmem fpvi

crypto offloads mem, timers, 
etc.
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 Generic software using the FPN-SDK generic API
 Same code used on supported hardware platforms

 High performance architecture
 Run to completion model with pipeline capabilities when 

required (QoS…)

 Implement only simple features to process 99 % of the 
traffic with maximum efficiency

 Complex processing for the rest of the traffic is delegated to 
the Linux Networking Stack 

 Optimized code
 Straightforward case optimized (if xxx_likely())

 Lockless, prefetch, cache usage

 Statistics are implemented per core to minimize 
performance impact

 Fast algorithms
 Route lookup with 8/8/8/8 trie

 Security Policy Database lookup with automatic linear / trie 
switching

 Load balancing of packets can be done (pipeline-hash 
plugin) if not provided by hardware

 Use of hardware offloads abstracted by the FPN-
SDK API
 Packet forwarding / sanity checks

 Crypto, QoS….

Protocol Implementation: Fast Path Modules
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 Fast Path Virtual Interface
 Provides NIC representor in Linux for standard configuration (e.g. iproute2)

 Implemented using FPN-SDK

 For DPDK, it is using Linux tun/tap + DPDK PMD virtio-user

 Fast path -> Linux : receive exception path
 Basic exception: packets are sent unmodified to get a standard processing by the Linux Networking stack

 Special exception: packets have been preprocessed by the Fast Path and are injected at the right place into the Linux 
Networking Stack, thanks to an eBPF program

 Linux -> Fast path : transmit exception path 
 Packets are sent out the physical ports by the Fast Path which owns NIC drivers

Interface Between Fast Path And Linux Networking Stack: FPVI
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Packet Exception Processing

in_pcblookup_connectfp_send_exception

fpn_send_exception

fpn_fpvi_vhost_send
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fpn_main_loop

vhost_enqueue
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Is it 
basic

Yes

fp_send_fptunebpf

fp_send_nonbasic_exc

tc_filter

fp_process_linux_tx

bpf_redirect

Linux kernel

Fast Path

Input ?
No

Yes



©6WIND 2020    10

 To configure the NIC
 Get / Set NIC flow control

 Link speed

 Offloads

 To monitor the fast path
 Display statistics 

 Display debugging information

 Command output is formatted in json

 API for extensions

Fast Path Commands: fp-cli

root@localhost:~# fp-cli iface
1:lo [VR-0] ifid=1 (virtual) <UP|RUNNING|FWD4|FWD6|MPLS> (0x3b)

type=loop mac=00:00:00:00:00:00 mtu=0 no numa tcp4mss=0 tcp6mss=0
IPv4 routes=0  IPv6 routes=0
if_ops: rx_dev=none rx_early=none tx_dev=none ip_output=none                     

3:dp0 [VR-0] ifid=3 (port 0) <UP|RUNNING|FWD4|FWD6|MPLS> (0x3b)                                
type=ether mac=de:ed:01:77:94:a2 mtu=1500 numa=0 tcp4mss=0 tcp6mss=0
IPv4 routes=2  IPv6 routes=0 

(…)
root@localhost:~# fp-cli iface-json
[
{
"vrfid": 0,
"ifaces": [

{
"name": "lo",
"ifid": 1,
"mac": "00:00:00:00:00:00",
"vrfid": 0,
"mtu": 0,
"numa": "no numa",
"ipv4_routes": 0,
"ipv6_routes": 0,
"master": null,
"port": "virtual",
"type": "loop",
"flags": [
"up",
"running",
"fwd4",
"fwd6",
"mpls"

],

(…)
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6WINDGate IP Forwarding Example: Call Flow

fp_ether_input

fp_ip_input

fp_ether_output

fp_send_packet

fp_ip_output

FP_DONE

Exception

• wrong IP checksum, truncated / malformed IP header
• presence of IP options
• TTL <= 1
• reserved IP destination addresses 

FP_DROP or Exception

Exception

• No route entry is found for destination
• Route entry is via a Linux Networking Stack / unknown 

interface
• ICMP redirect needed
• Packet size > output interface MTU && DF set

• Ethertype is not IPv4

• Route lookup:
Customizable 16/8/8 
trie

• Decrement TTL
• Update IP 

checksum
• Mark ARP entry 

reachable

• Add Ethernet header

• Remove Ethernet 
header

• Fast Path packet 
processing

• Exception triggering
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