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1 INTRODUCTION 

1.1 Purpose of the document 

This document provides an overview about the exception and the Linux – Fast Path synchronization 
mechanisms implemented in 6WINDGate 5. 
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2 6WINDGATE ARCHITECTURE OVERVIEW 

2.1 BENEFITS OF 6WINDGate’s LINUX – FAST PATH SYNCHRONIZATION 

The 6WINDGate architecture is based on a Fast Path implementation that accelerates the Linux Networking 
Stack. The Fast Path requires dedicated high-performance packet processing software designed to take 
advantage of modern multicore processor platforms. This Fast Path is isolated from Linux, running on 
dedicated cores, to ensure deterministic performance. 

Having a high-performance isolated Fast Path is mandatory but not enough. It has to be integrated with 
Linux Control Plane and Management Planes. 

There are two options to achieve this integration: 

• Redesign how Control and Management Planes interact with the Fast Path. This requires a 
significant amount of work to adapt and validate a very large number of complex protocols. 
Standard Linux networking tools have also to be adapted to work with the Fast Path. This approach 
has been selected by the fd.io/VPP open source project for example. 

• Reuse existing Linux Control and Management Planes. This approach requires the design of a 
Linux-friendly Data Plane to let the Fast Path act as a transparent solution to Linux. 

This second option has been successfully implemented in 6WINDGate using Linux – Fast Path 
synchronization to provide: 

• Support for all major Linux distributions. 

• Reuse of all existing Linux management tools (iproute, iptables, ipset, brctl, ovs-*ctl, tcpdump…) 
with no changes. 

• Support with no changes of well-known open source Control Plane applications such as FRRouting 
and StrongSwan. 

• Support with no changes of management tools, either open source such as Ganglia, Grafana, 
Nagios, OpenDayLight and OpenStack or commercial distributions. 

As a summary, Linux running 6WINDGate is Linux. 
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2.2 6WINDGATE EXCEPTION STRATEGY AND CONTINUOUS SYNCHRONIZATION 

To achieve the Fast Path transparency to Linux, 6WINDGate implements what we call “Linux – Fast Past 
synchronization”. It relies on two mechanisms: exception strategy and continuous synchronization, 
as described in Figure 1. 

 

 

Figure 1: 6WINDGate - Exception and Continuous Synchronization 
 

When local information is missing in the Fast Path to process a packet, when a packet type is not supported 
by the Fast Path, or when a packet is destined to the local Control Plane, then it is diverted to the Linux 
Networking Stack. These packets are known as exception packets and this mechanism is called the 
exception strategy. 
The Linux Networking Stack is responsible for processing packets that could not be processed at the Fast 
Path level. These packets will be either processed by the 6WINDGate Linux Networking Stack, or by the 
Control Plane. It is to be noted that, in most cases, this accounts only for a few percentages of the traffic. 

In the case of exception packets due to lack of information, the information learnt in the Linux Networking 
Stack during the processing of the packet will be transparently synchronized into the Fast Path. This way, 
subsequent packets of the same flow will then be handled by the Fast Path. This is the mechanism of 
continuous synchronization. 
A good example is the case of a packet being diverted to the Linux Networking Stack because L2 forwarding 
information is missing in the Fast Path. The 6WINDGate Linux Networking Stack will receive the packet, 
perform L2 resolution and forward the packet. Thanks to the 6WINDGate architecture, the new L2 entry 
will automatically be configured in the Fast Path, so that a next packet of the same flow is processed in the 
Fast Path. 
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2.3 6WINDGate MAIN COMPONENTS 

 

 

Figure 2: 6WINDGate Main Components 
 
Figure 2 details the main components of the 6WINDGate architecture, as previously introduced. These 
components will be detailed in the subsequent paragraphs: 

• The 6WINDGate Fast Path Networking - SDK (FPN-SDK) provides an abstraction layer to the 
6WINDGate Fast Path modules through the FPN API. The FPN-SDK is implementation-dependent; 
a specific FPN-SDK is required for a given implementation of the Fast Path for a processor 
environment (DPDK, processor SDK). 

• The 6WINDGate Fast Path modules process packets efficiently according to local information stored 
in the Shared Memory. 

• The NETFPC API triggers events in the Fast Path from the 6WINDGate Control Plane. 

• The 6WINDGate Cache Manager and Fast Path Manager are Linux userland modules allowing 
continuous synchronization between the Linux Networking Stack and the Fast Path. Both modules 
communicate through the Fast Path Control (FPC) API. 

• The Linux Netlink API, running without any modification, notifies the Cache Manager of kernel 
events and state changes for interfaces, Layer 2 - Layer 3 tables, IPsec… It is also used to 
interface the 6WINDGate Linux Networking Stack to the Control Plane. 

• The 6WINDGate Fast Path Virtual Interface (FPVI) allows the communication between the Fast 
Path and the Linux Networking Stack for the implementation of the exception strategy. Exceptions 
(refer section 3) are either directly sent to a TUN/TAP Linux driver or provided to an eBPF program 
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in charge of inserting the exception packet at the right location in the Linux Networking Stack. 

• The Fast Path Statistics (FPS) module gathers counters from Fast Path protocols and builds global 
statistics for the system (Fast Path plus Linux Networking Stack). 

• The Hitflags daemon updates hitflags into the Linux Networking Stack when packets go through 
the Fast Path. Hitflags inform the Linux Networking Stack about updates of ARP entries, conntracks, 
Linux Bridge… 
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3 EXCEPTIONS 

3.1 EXCEPTION CONCEPT 

In the 6WINDGate architecture, all packets are received by the Fast Path, but some of them are delegated 
to Linux according to the exception concept: 

• Local destination, 

• Missing processing information (ARP, IPsec SA…), 

• Unaccelerated protocol. 

The exception concept applies to all protocols that have to be split into two parts: 

• The Fast Path only implements packet processing to be done on each packet. This is performed by 
a simplified IP stack that finds the necessary information in a local memory that has been previously 
updated by high level protocols (signaling). 

• When a received packet is too complex to be processed at the Fast Path level, it is forwarded to 
the Linux Networking Stack through an exception using a dedicated API called FPVI. For instance, 
it can be: 

o A packet intended at the Control Plane (ICMP echo request, routing packets, IKE packets…), 
o A packet for which processing information is missing (No L3 route available, No L2 address 

available for destination/gateway, no IPsec info (SP/SA), missing conntrack info…), 
o A packet for a protocol delegated to Linux such as ARP/NDP or ICMP (TTL expiration). 

It can be noted that exception packets are only a few percentage of the traffic making useless to have a 
full and complex IP stack at the Fast Path level. 

3.2 EXCEPTION TYPE 

Two kinds of exceptions are defined according to the process to be applied on the packet: 
• The first type of exception is called “Basic Exception”. For this type of exception, the Fast Path can 

provide the original incoming packet to the Linux Networking Stack, where it is processed as 
incoming on a standard network interface. 
For example, a Basic Exception is raised when the route lookup fails during simple IP forwarding. 

• The second type of exception is called “Special Exception”. This type of exception is raised when 
the original packet cannot be restored and sent by the Fast Path to the Linux Networking Stack. 
The exception packet needs to be injected in a specific location in the Linux Networking Stack 
packet processing path. 

For example, when an IPsec packet is received and decrypted by the Fast Path and forwarding 
information is missing for the inner packet, the Fast Path needs to raise an exception, but is not 
able to restore the original packet. Moreover, the decrypted packet shall not be sent in the standard 
input path of the Linux Networking Stack, as it would be discarded by the Security Policies. In this 
case, a Basic Exception cannot be used, and we use a Special Exception to inject the inner packet 
after the IPsec input processing checks in the Linux Networking Stack processing. 



  Model v1.1 

 
6WINDGate - Exceptions and Linux - 

Fast Path Synchronization v2.0 

  Page 7 
 

_________________________________________________________________________________________________________________ 
6WIND copyright 2020. 

3.3 FAST PATH VIRTUAL INTERFACE 

The Fast Path Virtual Interface (FPVI) allows exchanging packets between the Fast Path and the Linux 
Networking Stack. The FPVI makes Fast Path ports appear as netdevices into the Linux Networking Stack. 

The purpose of the FPVI is to: 
• Provide a physical NIC representor in Linux for configuration, monitoring and traffic capture. 

• Send packets from Linux to the Fast Path (locally generated traffic). 

• Exchange exception packets between the Fast Path and Linux. 

The FPVI is implemented in Linux using the TUN/TAP driver, and in the Fast Path through the FPN-SDK 
using the DPDK virtio-user PMD providing a virtual port to each TUN/TAP interface. 

Packets to be sent locally by the Linux Networking Stack are directly injected in the outgoing flow to be 
processed by the Fast Path, using the TUN/TAP Linux driver. 

The FPVI implements the exception strategy as follows: 
• For Basic Exceptions, the FPVI implements a standard processing through the netif_rx function of 

the TUN/TAP Linux driver. 

• For Special Exceptions, on the ingress path, packets are injected at the right place into the Linux 
Networking Stack thanks to an eBPF program, as explained in the next paragraph. On the egress 
path, packets are sent directly using the standard sendmsg() API. 

3.4 eBPF PROGRAM 

3.4.1 Background on eBPF 

First, BPF (Berkeley Packet Filter) is an assembly-like language initially developed for BSD systems. The 
idea is to filter packets early in the kernel to avoid useless copies to userspace applications like “tcpdump”. 
Then this technology has been extended with new points of attachments, with the ability to call functions, 
and it has been optimized to generate code close to CPU machine code. 

The first BPF use cases targeted kernel tracing, to debug with minimum overhead any event inside the 
kernel. 

Thanks to the networking hooks like TC and XDP, this usage has been extended to network filtering, for 
example to implement anti-DDoS, or to model hardware component. 

In terms of programming, an eBPF program is a C-like program using the uapi/linux/bpf.h API described in 
the Linux kernel. A LLVM compiler can translate this program into eBPF assembly instructions. This binary 
can then be loaded into the kernel, verified by the kernel mainly to make sure there is no loop or non-
authorized memory access, and finally executed. 

3.4.2 Special Exception with eBPF 

The processing of Special Exceptions relies on an eBPF program. The role of this program is to drive the 
packets to the right hook inside the Linux Networking Stack for further processing aligned with the work 
already done by the Fast Path. 

The Fast Path sends a Special Exception via a dummy interface to which the eBPF program is attached with 
TC. To specify which operation is needed on the packet, meta data is attached to the packet, by means of 
a specific trailer, called FPTUN. For example, the trailer is filled with the interface index to which the packet 
should be injected. 

Therefore, the eBPF program responsible for Special Exception processing is called the FPTUN handler. 



  Model v1.1 

 
6WINDGate - Exceptions and Linux - 

Fast Path Synchronization v2.0 

  Page 8 
 

_________________________________________________________________________________________________________________ 
6WIND copyright 2020. 

3.4.3 Example with local delivery over GRE 

Figure 3 is an example of GRE packets being processed by the Fast Path. The Inner TCP packet should be 
delivered to the application as coming from the Linux GRE interface. 

 

 

Figure 3: eBPF Example of Local Delivery Over GRE 
 
The Fast Path receives the packet, decapsulates the GRE header and sees that the inner packet is intended 
for local delivery. It appends a FPTUN trailer with the index of Linux gre0 interface to the packet and sends 
it to the dummy0 interface. The eBPF FPTUN handler receives the packet, retrieves the FPTUN information 
using the bpf_skb_load_bytes() API, removes the trailer using the bpf_skb_change_tail() API, and finally 
the packet is redirected using the bpf_redirect() API to the ingress path of the gre0 interface. 

The value of the interface index is known thanks to the Linux – Fast Path synchronization mechanism 
described in Section 4. 

3.4.4 Example with “tcpdump” 

As Fast Path packets are not visible to the Linux Networking Stack, a specific mechanism is required to 
provide the “tcpdump” feature. The exception mechanism and the eBPF technology are used again to 
provide the “tcpdump” behavior and give a convenient way to capture offloaded packets. 

First, when tcpdump is called in Linux, the BPF filter is synchronized in the Fast Path, so that the Fast Path 
will filter packets according to user patterns. 

On match, a copy of the packet will be sent as a Special Exception to Linux. This will result on the packet 
being displayed by tcpdump on the matching netdevice in Linux. 

As the Fast Path processes the original packet, a mechanism is needed to avoid actual processing by the 
Linux Networking Stack. This is done by marking the tcpdump exception packet through the eBFP FPTUN 
handler. Another eBPF program is attached to the Linux netdevice to drop the marked packet right after it 
has been cloned and sent to “tcpdump”. This is described in Figure 4. 
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Figure 4: eBPF Example for "tcpdump" 
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4 LINUX - FAST PATH SYNCHRONIZATION 

4.1 OVERVIEW 

Figure 5 details the Linux – Fast Path synchronization architecture. 

 

 

Figure 5: Linux Synchronization Architecture 
 

The Cache Manager is a userland software module that performs synchronization between the Linux 
Networking Stack and the Fast Path. It listens to the kernel updates (Netlink messages) done by the Control 
Plane (ARP and NDP entries, L3 routing tables, Security Associations…) and the Management Plane. The 
Cache Manager synchronizes the Fast Path with this information. Synchronization is made thanks to the 
FPC API. The Cache Manager sends messages including commands to the Fast Path Manager. Thanks to 
the Cache Manager, no change is required in the Control Plane and the Management Plane to be integrated 
with Fast Path modules. 

The Fast Path Manager is a userland software module and can be considered as a Fast Path Linux driver. 
The Fast Path Manager receives command messages from the Cache Manager through the FPC API and 
analyses these commands to update information for Fast Path modules. The Fast Path sends 
acknowledgment messages (error management) to the Fast Path Manager using the FPC API. 
The update of information by the Fast Path Manager for Fast Path modules can use two different 
mechanisms: 

• The Fast Path Manager writes relevant information for the different Fast Path modules, for instance 
routing entries, ARP entries, security policies, security associations… in a Shared Memory, 

• The Fast Path Manager uses NETFPC. NETFPC is the transport protocol used to communicate 
between a Fast Path module and its co-localized Fast Path via a network pseudo-interface. This 
protocol can be used when a notification must be directly sent to a Fast Path module. 
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4.2 CACHE MANAGER 

When the Cache Manager starts, it fetches its state from the Linux Networking Stack: interfaces, route 
entries... This processing is asynchronously updated when a new physical interface is detected through 
Netlink or an ioctl. 
Then, the Cache Manager sends a reset command to the Fast Path Manager and waits for an 
acknowledgment of this command before sending any other command. 

When the Cache Manager is running, it listens to: 
• Netlink events, which are converted and reported to the Fast Path Manager, 

• Fast Path Manager responses. 

Netkink messages are originated by services (UNIX daemon or kernel modules), they are provisioned into 
the kernel, and then they are announced over the Netlink socket. 

4.3 FAST PATH MANAGER 

The Fast Path Manager application is a daemon acting as a server waiting for the Cache Manager to connect. 

The initial task for the Fast Path Manager is to get read and write access to the Shared Memory. Then, the 
Fast Path Manager is waiting for a connection from the Cache Manager to enable FPC communication. 

4.4 FPC API 

The FPC API is the interface between the Cache Manager and the Fast Path Manager. It defines the 
exchange protocol and the structures of the configuration messages exchanged between them. The FPC 
API makes possible to have a distributed system, where the Cache Manager and Fast Path Manager run on 
different processors. 

The FPC API is based on a specific protocol using a connection-oriented UNIX stream. It implements a 
client (Cache Manager) / server (Fast Path Manager) architecture. Each message is encapsulated with a 
header that includes a message type, a sequence number, a report, and the length of the message. 

4.5 6WINDGate Fast Path Configuration 

4.5.1 Shared Memory 

The 6WINDGate Fast Path modules read packet processing information from a dedicated memory zone, 
called the Shared Memory. 

The Shared Memory allocation is SDK dependent, but its implementation is generic and the same data 
structures are provided, whatever the underlying hardware or execution environment. Data structures in 
the Shared Memory have been specifically designed for multicore processing. To achieve a high level of 
performance, access to the Shared Memory shall be lock free. This is ensured by a dedicated memory 
allocation that prevents different software modules to write in same locations and by optimized mechanisms 
to update data such as routing tables in memory. 
The information in the Shared Memory is continuously updated by the Linux Networking Stack - Fast Path 
synchronization mechanism, and is read by the 6WINDGate Fast Path Modules when they need to process 
a packet. 

Taking routing as an example, the 6WINDGate IPv4 and IPv6 Forwarding Fast Path Modules read entries 
of the routing table in the Shared Memory. When the routing table has to be updated in the Shared Memory 
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(addition, deletion of a route…), this is done by the Fast Path Manager that has received a command on 
the NETFPC from the Cache Manager that previously listened to the Netlink messages between the Control 
Plane routing application and the Linux Networking Stack. 

On the other hand, the Shared Memory is also updated by the 6WINDGate Fast Path Modules to maintain 
a set of Fast Path Statistics, used by the FPS to provide aggregated statistics when required from the 
Control Plane. 

4.5.2 NETFPC 

The Shared Memory is a non-interactive configuration mechanism. The Linux Networking Stack - Fast Path 
synchronization mechanisms write information there, which is used by the 6WINDGate Fast Path modules 
when they need it. 

However, in some cases, an interactive communication mechanism is needed, that allows one side to trigger 
an event on the other side. 
NETFPC is the transport protocol used to communicate between the Fast Path Manager and the Fast Path 
via a logical network interface. This is an alternative of writing into the Shared Memory when a change in 
the configuration requires the Fast Path to act immediately, which typically results in updating internal 
states outside the Shared Memory. 
NETFPC is used for instance for: 

• Setting the MTU on an interface as the Fast Path owns the drivers, 

• Configuring MAC address or promiscuous mode. 

NETFPC uses a point to point communication between the FPM and the Fast Path modules. 

4.6 VRF SYNCHRONIZATION 

Virtual Routing and Forwarding (VRF) is an IP technology that allows multiple instances of a routing table 
to work simultaneously within the same router. 6WINDGate provides support for VRF in all the Fast Path 
modules. In Linux, VRFs are configured using network namespaces. 

The Linux / Fast Path Synchronization - VRF module implements synchronization of Linux netns to Fast 
Path VRFs. It based on Netlink, and the libvrf library is provided to help userland applications manage and 
monitor 6WINDGate VRFs from any Linux userland process. 
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5 FAST PATH STATISTICS AND HITFLAGS 

5.1 FAST PATH STATISTICS 

The Fast Path Statistics module synchronizes the statistics of the Fast Path into the Linux Networking Stack. 
If this synchronization was not implemented, the system statistics would be inaccurate as the Linux 
Networking Stack is not aware of the traffic managed by the Fast Path. 
These statistics are implemented through the following mechanisms: 

• The Fast Path modules update the Shared Memory with statistics, 

• The FPS daemon reads the Shared Memory statistics, 

• The FPS daemon updates the kernel with the statistics, typically using Netlink. 

For instance, an IKE deamon like StrongSwan can rely on up-to-date XFRM statistics, without any patch, 
even though all the IPsec traffic is being handled by the Fast Path. 

Not all kernel statistics can be updated using a userspace API. In particular, at the time of writing there is 
no API to update the interface statistics or IP MIB. However, a library can be pre-loaded for applications 
using Netlink, like iproute2, net-snmp, bmon, so that Netlink requests for statistics can be updated 
transparently with the Fast Path statistics from the Shared Memory. 
For other type of management applications, APIs are provided to collect both Linux and Fast Path statistics 
of interface and IP MIB. 

5.2 HITFLAGS 

Some kernel objects like ARP entries or conntracks follow a state machine that depends on the usage by 
the Linux Data Plane. As packets are processed by the Fast Path, Linux is not aware that these entries are 
used, and a mechanism is needed to prevent them from expiring. 

This is the role of the Hitflags mechanism. 
Hitflags are implemented through the following mechanisms: 

• The Fast Path modules update the Shared Memory with hitflags, 

• The Hitflags daemon reads the Shared Memory entries, collects the entries marked with the hitflags 
and resets the flag, 

• The Hitflags deamon updates the kernel state using Netlink. 

As a result,the state of kernel objects remains alive as long as the Fast Path is actively using them and the 
packet processing remains steady in the Fast Path. 
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