

©6WIND 2018 v1.0 / 2

 There are two options to achieve the integration of a high performance isolated Fast Path with Linux
Control and Management Planes
1. Redesign how Control and Management Planes interact with the Data Plane

 Requires a significant amount of work to adapt and validate a large number of complex protocols

 Used by VPP

2. Reuse “as is” existing Linux Control and Management Planes

 Rely on the design of a Linux-friendly Data Plane to let the Fast Path act as a transparent solution to Linux

 This second option has been successfully implemented in 6WINDGate using Linux - Fast Path
synchronization

Integration of Fast Path with Control and Management Planes

©6WIND 2018 v1.0 / 3

Fast Path
Data Plane

Linux Kernel

Control Plane

Management Existing Linux applications are not
modified and developing new
applications is pure Linux
development

 Compatible with third-party open
source or commercial control plane
applications that configure Linux
(routing, IKE, ...)

 Linux management tools can be re-
used (iproute, iptables, ipset, brctl,
ovs-*ctl, tcpdump, etc.)

 Supports major Linux distributions

Benefits of Linux – Fast Path Synchronization

Linux Running 6WINDGate is Linux

©6WIND 2018 v1.0 / 4

Exceptions And Continuous Synchronization

Linux
Networking

Stack

Control
Plane

Fast
Path?local

info

local
info

©6WIND 2018 v1.0 / 5

Exceptions And Continuous Synchronization

Linux
Networking

Stack

Control
Plane

Fast
Path?local

info

local
info

Fast Path Packet

©6WIND 2018 v1.0 / 6

Exceptions And Continuous Synchronization

Linux
Networking

Stack

Control
Plane

Fast
Path?local

info

local
info

Fast Path Packet

Exception
Packet

©6WIND 2018 v1.0 / 7

Exceptions And Continuous Synchronization

Linux
Networking

Stack

Control
Plane

Fast
Path?local

info

local
info

Fast Path Packet

Exception
Packet

©6WIND 2018 v1.0 / 8

Exceptions And Continuous Synchronization

Linux
Networking

Stack

Control
Plane

Fast
Path?local

info

local
info

Synchronization
module

Fast Path Packet

Exception
Packet

©6WIND 2018 v1.0 / 9

Exceptions And Continuous Synchronization

Linux
Networking

Stack

Control
Plane

Fast
Path?local

info

local
info

Synchronization
module

Fast Path Packet

Exception
Packet

Continuous
Synchronization

©6WIND 2018 v1.0 / 10

Linux - Fast Path Synchronization: Exceptions

Shared
Memory

Linux cores
Linux

Networking Stack

Control Plane

Fast Path cores

Data
Plane
(kernel +
Fast Path)

Control
Plane
(userland)

FPTUN

Cache
Manager

Fast Path
ManagerFPC

Netlink

FPS
&

Hitflags
FP

N
-S

D
K

Fast Path
Modules

NETFPC

FPN

DPVI

loopback

Modules involved
in exception

handling

©6WIND 2018 v1.0 / 11

 All packets are received by the Fast Path, but some
are delegated to Linux
 Local destination

 Missing processing information in Shared Memory (ARP,
IPsec SA, etc.)

 Unaccelerated protocol

 They are sent to Linux through DPVI/FPTUN
 DPVI = standard logical Linux netdevice

 Basic exception for standard processing

 Extended exception for packets that have been
preprocessed by the Fast Path: thanks to FPTUN header,
packets are injected at the right place into the Linux
Networking Stack

 Packets are then processed by the Linux
Networking Stack
 Missing information (ARP, IPsec SA, etc.) is resolved by

Linux and will be synchronized to the Fast Path (see next
slides)

 Benefits
 Complete networking stack, relying on Linux for

unaccelerated protocols

 Fast Path benefits from rich Linux Control Plane, no need to
develop or change Control Plane daemons

 No change to Linux

Exception Strategy

©6WIND 2018 v1.0 / 12

 Packets intended at Control Plane
 ICMP echo requests

 Control Plane daemons (BGP, OSPF, IKE, etc.)

 …

 Missing info to process packet
 No L3 route available

 No L2 address available for destination/gateway

 No IPsec info (SP/SA)

 Missing conntrack info

 …

 Protocols delegated to Linux
 ARP/NDP

 ICMP stack (TTL expiration)

 …

Exception Cases

Linux
Networking

Stack

Fast
Path?local

info

local
info

Fast Path Packet

Exception
Packet

©6WIND 2018 v1.0 / 13

 Basic exceptions
 Default case

 Original packet sent to the Linux Networking Stack

 Restore IPv4/IPv6 headers, L2 headers

 Example: route lookup fails during forwarding

 Extended exceptions
 Original packet cannot be restored

 It is encapsulated with FPTUN

 Specific header with meta-data + packet as-is

 Will be processed by the FPTUN driver in Linux to
inject it at the right place in the Linux Networking
Stack

 Example: route lookup fails on decrypted packet
after IPsec processing

Exception Types

©6WIND 2018 v1.0 / 14

Linux - Fast Path Synchronization: Configuration

Shared
Memory

Linux cores
Linux

Networking Stack

Control Plane

Fast Path cores

Data
Plane
(kernel +
Fast Path)

Control
Plane
(userland)

Cache
Manager

Fast Path
ManagerFPC

Netlink

FP
N

-S
D

K

Fast Path
Modules

NETFPC

FPN

DPVI

Modules
involved in

synchronization

FPTUN

FPS
&

Hitflags

loopback

©6WIND 2018 v1.0 / 15

 Based on two applications
 Cache Manager (CM): cmgrd executable

 Fast Path Manager (FPM): fpmd executable

 Local or remote communication between CM and FPM is done by the Fast Path Control API (FPC API)

 Allow distributed architectures with Control Plane and Data Plane running on different processors

 Full synchronization path

Configuration Synchronization Between Linux and Fast Path

Linux Networking Stack  Netlink Cache Manager  FPC Protocol FPM  Shared Memory  Fast Path
FPM  NETFPC  Fast Path

©6WIND 2018 v1.0 / 16

 Part of the Linux Fast Path Synchronization module

 Run as a Linux userland application

 Listen to the Netlink socket, for kernel internal states (Control Plane and configuration updates)

 Transform Netlink messages into FPC messages

 Control Plane modules (routing, IKE, PPP…) are not modified

Synchronization: Cache Manager (CM)

©6WIND 2018 v1.0 / 17

 FPC API
 Interface between Cache Manager and Fast Path Manager

 Define the exchange protocol and the structures of the configuration messages exchanged between the Cache Manager
and the Fast Path Manager

 Can work on distributed architectures with non co-localized Cache Manager and Fast Path Manager

 Dedicated protocol
 UNIX or TCP socket

 client/server

 Common header

 Type, sequence number (SN), report, length

Synchronization: FPC API

©6WIND 2018 v1.0 / 18

 Part of the Linux Fast Path synchronization module

 Run as a Linux userland application

 Application that translates FPC API messages to configure Fast Path modules using
 Read / write Shared Memory

 Send / receive notifications to / from Fast Path through NETFPC

 Can work on distributed architectures with non co-localized Cache Manager and Fast Path Manager

Synchronization: Fast Path Manager (FPM)

©6WIND 2018 v1.0 / 19

 Contain structures for
 Physical ports

 Forwarding table

 Statistics

 IPsec processing

 etc.

 Read/write access for
 FPM: writes local information received from CM through FPC messages

 Fast Path: reads local information used for packet processing (L2/L3 entries, IPsec SAs, etc.) and writes statistics

 FPS: reads statistics

 Allocation is specific to processor architecture, contents are generic

Synchronization: Shared Memory

©6WIND 2018 v1.0 / 20

 Used to trigger an event from Linux to Fast Path
 Set the MTU on an interface (the Fast Path owns the drivers)

 Configure MAC address or promiscuous mode

 …

 Communication socket between FPM and Fast Path modules
 Point to point communication

 IPv6 RAW

 Link-local addresses

 Dedicated network namespace, isolated from networking configuration

Synchronization: NETFPC

©6WIND 2018 v1.0 / 21

 Virtual Routing and Forwarding (VRF): IP technology that allows multiple instances of a routing table to work
simultaneously within the same router

 6WINDGate provides support for Virtual Routing and Forwarding (VRF) in all Fast Path modules

 In Linux, VRFs are configured using network namespaces

 The Linux / Fast Path Synchronization - VRF module implements synchronization of Linux netns to Fast Path
VRFs
 Userland API: libvrf

 This library allows to manage and monitor 6WINDGate VRFs from any Linux userland process

 Kernel API: netns-vrf.ko

 The kernel module translates Linux network namespaces to VRF instances at kernel level

Synchronization: VRF

©6WIND 2018 v1.0 / 22

Linux - Fast Path Synchronization: Statistics & Hitflags

Shared
Memory

Linux cores
Linux

Networking Stack

Control Plane

Fast Path cores

Data
Plane
(kernel +
Fast Path)

Control
Plane
(userland)

FPTUN

Cache
Manager

Fast Path
ManagerFPC

Netlink

FPS
&

Hitflags
FP

N
-S

D
K

Fast Path
Modules

NETFPC

FPN

DPVI

loopback

Modules involved
in statistics &
hitflags sync

©6WIND 2018 v1.0 / 23

 Reports Fast Path statistics into the Linux Networking Stack
 Fast Path modules update the Shared Memory with statistics

 FPS daemon reads Shared Memory statistics, and communicates them to the FPTUN kernel module through the
loopback interface

 FPTUN kernel module adds Fast Path statistics to Linux Networking Stack statistics

 Linux applications are unchanged
 Linux applications read statistics as usual from the Linux kernel, which include kernel + Fast Path Statistics

 Example: net-snmp used as-is with standard MIBs

Synchronization: Statistics (FPS)

©6WIND 2018 v1.0 / 24

 When packets go through the Fast Path, the kernel object states are not updated
 Examples: ARP entries, conntracks, Linux bridge, …

 The Fast Path Hitflags daemon updates hitflags into the Linux Networking Stack when packets hit the
Fast Path
 Fast Path module updates Shared Memory with hitflags

 Hitflags daemon reads Shared Memory entries (ARP for example), and communicates them to the FPTUN kernel
module through the loopback interface

 FPTUN kernel module updates states into the Linux Networking Stack

 Linux applications are unchanged
 Linux applications can read states from the Linux kernel as usual

Synchronization: Hitflags

	6WINDGate Exceptions and Linux - Fast Path Synchronization�
	Integration of Fast Path with Control and Management Planes
	Benefits of Linux – Fast Path Synchronization
	Exceptions And Continuous Synchronization
	Exceptions And Continuous Synchronization
	Exceptions And Continuous Synchronization
	Exceptions And Continuous Synchronization
	Exceptions And Continuous Synchronization
	Exceptions And Continuous Synchronization
	Linux - Fast Path Synchronization: Exceptions
	Exception Strategy
	Exception Cases
	Exception Types
	Linux - Fast Path Synchronization: Configuration
	Configuration Synchronization Between Linux and Fast Path
	Synchronization: Cache Manager (CM)
	Synchronization: FPC API
	Synchronization: Fast Path Manager (FPM)
	Synchronization: Shared Memory
	Synchronization: NETFPC
	Synchronization: VRF
	Linux - Fast Path Synchronization: Statistics & Hitflags
	Synchronization: Statistics (FPS)
	Synchronization: Hitflags
	Thank You��6WIND.com

