
6WIND copyright 2018.

6WINDGate™
-

Exceptions and Linux - Fast Path
Synchronization

-
v1.0

 Model v1.1

6WINDGate - Exceptions and Linux -

Fast Path Synchronization v1.0

 Page ii

6WIND copyright 2018.

TABLE OF CONTENTS

1 INTRODUCTION 1

1.1 PURPOSE OF THE DOCUMENT 1

1.2 ACRONYMS 1

2 6WINDGATE ARCHITECTURE OVERVIEW 3

2.1 BENEFITS OF 6WINDGATE’S LINUX – FAST PATH SYNCHRONIZATION 3

2.2 6WINDGATE EXCEPTION STRATEGY AND CONTINUOUS SYNCHRONIZATION 4

2.3 6WINDGATE MAIN COMPONENTS 5

3 EXCEPTIONS 7

3.1 EXCEPTION CONCEPT 7

3.2 EXCEPTION TYPE 7

3.3 DATA PLANE VIRTUAL INTERFACE 8

3.4 FPTUN ENCAPSULATION 8

4 LINUX - FAST PATH SYNCHRONISATION 9

4.1 OVERVIEW 9

4.2 CACHE MANAGER 10

4.3 FAST PATH MANAGER 10

4.4 FPC API 10

4.5 6WINDGATE FAST PATH CONFIGURATION 10
4.5.1 Shared Memory 10
4.5.2 NETFPC 11

4.6 VRF SYNCHRONIZATION 11

5 FAST PATH STATISTICS AND HITFLAGS 12

5.1 FAST PATH STATISTICS 12

5.2 HITFLAGS 12

 Model v1.1

6WINDGate - Exceptions and Linux -

Fast Path Synchronization v1.0

 Page iii

6WIND copyright 2018.

TABLE OF FIGURES

Figure 1: 6WINDGate - Exception and Continuous Synchronization ... 4
Figure 2: 6WINDGate Main Components ... 5
Figure 3: Linux Synchronization Architecture ... 9

 Model v1.1

6WINDGate - Exceptions and Linux -

Fast Path Synchronization v1.0

 Page 1

6WIND copyright 2018.

1 INTRODUCTION

1.1 PURPOSE OF THE DOCUMENT

This document provides an overview about the exception and the Linux – Fast Path synchronization
mechanisms implemented in 6WINDGate.

1.2 ACRONYMS

API Application Programming Interface

ARP Address Resolution Protocol
CM Cache Manager

CP Control Plane

DPDK Data Plane Development Kit
DPVI Data Plane Virtual Interface

FP Fast Path
FPC Fast Path Control

FPM Fast Path Manager

FPN Fast Path Networking
FPS Fast Path Statistics

FPTUN Fast Path TUNelling
ICMP Internet Control Message Protocol

IKE Internet Key Exchange
IP Internet Protocol

IPsec IP Security

L2 Layer 2
L3 Layer 3

MAC Media Access Control
MIB Monitoring Information Base

MTU Maximum Transmission Unit

NAT Network Address Translation
NIC Network Interface Card

NDP Neighbor Discovery Protocol
NETFPC Network-based FPC

PPP Point to Point Protocol

 Model v1.1

6WINDGate - Exceptions and Linux -

Fast Path Synchronization v1.0

 Page 2

6WIND copyright 2018.

SDK Software Development Kit

SA Security Association
SP Security Policy

TTL Time To Live
VPP Vector Packet Processing

VRF Virtual Routing and Forwarding

 Model v1.1

6WINDGate - Exceptions and Linux -

Fast Path Synchronization v1.0

 Page 3

6WIND copyright 2018.

2 6WINDGATE ARCHITECTURE OVERVIEW

2.1 BENEFITS OF 6WINDGATE’S LINUX – FAST PATH SYNCHRONIZATION

The 6WINDGate architecture is based on a Fast Path implementation that accelerates the Linux Networking
Stack. The Fast Path requires dedicated high-performance packet processing software designed to take
advantage of modern multicore processor platforms. This Fast Path is isolated from Linux, running on
dedicated cores, to ensure deterministic performance.

Having a high-performance isolated Fast Path is mandatory but not enough. It has to be integrated with
Linux Control Plane and Management Planes.

There are two options to achieve this integration:

• Redesign how Control and Management Planes interact with the Fast Path. This requires a
significant amount of work to adapt and validate a very large number of complex protocols.
Standard Linux networking tools have also to be adapted to work with the Fast Path. This approach
has been selected by the VPP open source project.

• Reuse existing Linux Control and Management Planes. This approach requires the design of a
Linux-friendly Data Plane to let the Fast Path act as a transparent solution to Linux.

This second option has been successfully implemented in 6WINDGate using Linux – Fast Path
synchronization to provide:

• Support for all major Linux distributions.

• Reuse of all existing Linux management tools (iproute, iptables, ipset, brctl, ovs-*ctl, tcpdump…)
with no changes.

• Support with no changes of well-known open source Control Plane applications such as FRRouting
and StrongSwan.

• Support with no changes of management tools, either open source such as Ganglia, Grafana,
Nagios, OpenDayLight and OpenStack or commercial distributions.

As a summary, Linux running 6WINDGate is Linux.

 Model v1.1

6WINDGate - Exceptions and Linux -

Fast Path Synchronization v1.0

 Page 4

6WIND copyright 2018.

2.2 6WINDGATE EXCEPTION STRATEGY AND CONTINUOUS SYNCHRONIZATION

To achieve the Fast Path transparency to Linux, 6WINDGate implements what we call “Linux – Fast Past
synchronization”. It relies on two mechanisms: exception strategy and continuous synchronization,
as described in Figure 1.

Figure 1: 6WINDGate - Exception and Continuous Synchronization

When local information is missing in the Fast Path to process a packet, when a packet type is not supported
by the Fast Path, or when a packet is destined to the local Control Plane, then it is diverted to the Linux
Networking Stack. These packets are known as exception packets and this mechanism is called the
exception strategy.

The Linux Networking Stack is responsible for processing packets that could not be processed at the Fast
Path level. These packets will be either processed by the 6WINDGate Linux Networking Stack, or by the
Control Plane. It is to be noted that, in most cases, this accounts only for a few percentages of the traffic.
In the case of exception packets due to lack of information, the information learnt in the Linux Networking
Stack during the processing of the packet will be transparently synchronized into the Fast Path. This way,
subsequent packets of the same flow will then be handled by the Fast Path. This is the mechanism of
continuous synchronization.

A good example is the case of a packet being diverted to the Linux Networking Stack because L2 forwarding
information is missing in the Fast Path. The 6WINDGate Linux Networking Stack will receive the packet,
perform L2 resolution and forward the packet. Thanks to the 6WINDGate architecture, the new L2 entry
will automatically be configured in the Fast Path, so that a next packet of the same flow is processed in the
Fast Path.

 Model v1.1

6WINDGate - Exceptions and Linux -

Fast Path Synchronization v1.0

 Page 5

6WIND copyright 2018.

2.3 6WINDGATE MAIN COMPONENTS

Figure 2: 6WINDGate Main Components

Figure 2 details the main components of the 6WINDGate architecture, as previously introduced. These
components will be detailed in the subsequent paragraphs:

• 6WINDGate Fast Path Networking - SDK (FPN-SDK) provides an abstraction layer to the
6WINDGate Fast Path modules through the FPN API. The FPN-SDK is implementation-dependent;
a specific FPN-SDK is required for a given implementation of the Fast Path for a processor
environment (DPDK, processor SDK).

• 6WINDGate Fast Path modules process packets efficiently according to local information stored in
the Shared Memory.

• NETFPC API triggers events in the Fast Path from the 6WINDGate Control Plane.

• 6WINDGate Cache Manager and Fast Path Manager are Linux userland modules allowing
continuous synchronization between the Linux Networking Stack and the Fast Path. Both modules
communicate through the Fast Path Control (FPC) API.

• The Linux Netlink API, running without any modification, notifies the Cache Manager of kernel
events and state changes for interfaces, Layer 2 - Layer 3 tables, IPsec… It is also used to
interface the 6WINDGate Linux Networking Stack to the Control Plane.

• 6WINDGate Data Plane Virtual Interface (DPVI) allows the communication between Fast Path and
Linux Networking Stack for the implementation of the exception strategy. Some exceptions (refer
section 3) are encapsulated in the Fast Path TUNelling (FPTUN) protocol that delivers exceptions
to the right destination.

 Model v1.1

6WINDGate - Exceptions and Linux -

Fast Path Synchronization v1.0

 Page 6

6WIND copyright 2018.

• Fast Path Statistics (FPS) module gathers counters from Fast Path protocols and builds global
statistics for the system (Fast Path plus Linux Networking Stack).

• The Hitflag daemon updates hitflags into the Linux Networking Stack when packets go through the
Fast Path. Hitflags inform the Linux Networking Stack about updates of ARP entries, conntracks,
Linux Bridge…

 Model v1.1

6WINDGate - Exceptions and Linux -

Fast Path Synchronization v1.0

 Page 7

6WIND copyright 2018.

3 EXCEPTIONS

3.1 EXCEPTION CONCEPT

In 6WINGGate architecture, all packets are received by the Fast Path, but some of them are delegated to
Linux using the exception concept:

• Local destination,

• Missing processing information in the Shared Memory (ARP, IPsec SA…),

• Unaccelerated protocol.

The exception concept applies to all protocols that have to be split into two parts:

• Fast Path only implements packet processing to be done on each packet. This is performed by a
simplified IP stack that finds the necessary information in a local memory that has been previously
updated by high level protocols (signaling).

• When a received packet is too complex to be processed at the Fast Path level, it is forwarded to
the Linux Networking Stack through an exception using a dedicated API called DPVI. For instance,
it can be:

o A packet intended at the Control Plane (ICMP echo request, routing packets, IKE packets…),
o A packet for which information is missing to process it (No L3 route available, No L2 address

available for destination/gateway, no IPsec info (SP/SA), missing conntrack info…),
o A packet for a protocol delegated to Linux such as ARP/NDP or ICMP (TTL expiration).

Packets to be sent locally by the Linux Networking Stack or the Control Plane are directly injected in the
outgoing flow.

It can be noted that exception packets are only a few percentages of the traffic making useless to have a
full and complex IP stack at the Fast Path level.

3.2 EXCEPTION TYPE

Two kinds of exceptions are defined according to the process to be applied on the packet:
• The first type of exception is called “Basic Exception”. For this type of exception, the Fast Path can

provide the original incoming packet to the Linux Networking Path, where it is processed as
incoming on a standard network interface.

For example, a Basic Exception is raised when the route lookup fails during forwarding.
• The second type of exception is called “Extended Exception”. This type of exception is raised when

the original packet cannot be restored and sent by the Fast Path to the Linux Networking Stack.
The exception packet needs to be injected in a specific location in the Linux Networking Stack
packet processing path.

For example, when an IPsec packet is received and decrypted by the Fast Path and forwarding
information is missing for the inner packet, the Fast Path needs to raise an exception, but is not
able to restore the original packet. Moreover, the decrypted packet shall not be sent in the standard
input path of the Linux Networking Stack, as it would be discarded by the Security Policies. In this
case, a Basic Exception cannot be used, and we use an Extended Exception to inject the inner

 Model v1.1

6WINDGate - Exceptions and Linux -

Fast Path Synchronization v1.0

 Page 8

6WIND copyright 2018.

packet after the IPsec input processing checks in the Linux Networking Stack processing. The
FPTUN protocol is used for encapsulating extended exceptions (refer section 3.4).

3.3 DATA PLANE VIRTUAL INTERFACE

The Data Plane Virtual Interface (DPVI) allows exchanging packets between the Fast Path and the Linux
Networking Stack. The DPVI makes Fast Path ports appear as netdevices into the Linux Networking Stack.

The DPVI is implemented using the FPN-SDK. It provides NIC representor in Linux for standard control
such as ethtool and other Linux tools.
The DPVI implements the exception strategy as follows:

• For Basic Exceptions, the DPVI implements a standard processing through netif_rx,

• For Extended Exceptions, packets are injected at the right place into the Linux Networking Stack
thanks to the FPTUN header.

The DPVI is also used by Linux to send packets through the Fast Path.

3.4 FPTUN ENCAPSULATION

A specific protocol called FPTUN (Fast Path TUNneling) has been defined to manage Extended Exceptions
between the different entities.

FPTUN is based on an encapsulation mechanism adding a FPTUN header to the IP or Ethernet packet to
be sent to the Linux Networking Stack.

The FPTUN protocol has a reserved Ethernet type ETH_P_FPTUN. The protocol number (ethertype) for the
FPTUN protocol is 0x2007. The FPTUN message is itself encapsulated into an Ethernet frame, and an
exception is raised. The FPTUN message will be received via one of the network interfaces exported by the
SDK, and handled by the FPTUN protocol handler in the Linux Networking Stack.

 Model v1.1

6WINDGate - Exceptions and Linux -

Fast Path Synchronization v1.0

 Page 9

6WIND copyright 2018.

4 LINUX - FAST PATH SYNCHRONISATION

4.1 OVERVIEW

Figure 3 details the Linux – Fast Path synchronization architecture.

Figure 3: Linux Synchronization Architecture

The Cache Manager is a Control Plane userland software module that performs synchronization between
Linux Networking Stack and Fast Path. It listens to the kernel updates (Netlink messages) done by the
Control Plane (ARP and NDP entries, L3 routing tables, Security Associations…) and the Management Plane.
The Cache Manager synchronizes the Fast Path with this information. Synchronization is made thanks to
the FPC API. The Cache Manager sends messages including commands to the Fast Path Manager. Thanks
to the Cache Manager, no change is required in the Control Plane and the Management Plane to be
integrated with Fast Path modules.

The Fast Path Manager is a Control Plane userland software module and can be considered as a Fast Path
Linux driver. The Fast Path Manager receives command messages from the Cache Manager through the
FPC API and analyses these commands to update information for Fast Path modules. The Fast Path sends
acknowledgment messages (error management) to the Cache Manager using the FPC API.
The update of information by the Fast Path Manager for Fast Path modules can use two different
mechanisms:

• The Fast Path Manager writes relevant information for the different Fast Path modules, for instance
routing entries, ARP entries, security policies, security associations… in a Shared Memory,

• The Fast Path Manager uses NETFPC. NETFPC is the transport protocol used to communicate
between a Fast Path module and its co-localized Fast Path via a network pseudo-interface. This
protocol can be used when a notification must be directly sent to a Fast Path module.

 Model v1.1

6WINDGate - Exceptions and Linux -

Fast Path Synchronization v1.0

 Page 10

6WIND copyright 2018.

4.2 CACHE MANAGER

When the Cache Manager starts, it fetches its state from the Linux Networking Stack: interfaces, route
entries... This processing is asynchronously updated when a new physical interface is detected through
Netlink or an ioctl.
Then, the Cache Manager sends a reset command to the Fast Path Manager and waits for an
acknowledgment of this command before sending any other command.

When the Cache Manager is running, it listens to:
• Netlink events, which are converted and reported to the Fast Path Manager,

• Fast Path Manager responses.

Netkink messages are originated by services (UNIX daemon or kernel modules), they are provisioned into
the kernel, and then they are announced over the Netlink socket.

4.3 FAST PATH MANAGER

The Fast Path Manager application is a daemon acting as a server waiting for the Cache Manager to connect.

The initial task for the Fast Path Manager is to get read and write access to the Shared Memory. Then, the
Fast Path Manager is waiting for a connection from the Cache Manager to enable FPC communication.

4.4 FPC API

The FPC API is the interface between the Cache Manager and the Fast Path Manager. It defines the
exchange protocol and the structures of the configuration messages exchanged between them. The FPC
API makes possible to have a distributed system, where the Cache Manager and Fast Path Manager run on
different processors.

The FPC API is based on a specific protocol using a connection-oriented UNIX stream when the Cache
Manager and Fast Path Manager are co-localized on the same processor or a TCP stream when the Fast
Path Manager and the Cache Manager run on different ones. It implements a client (Cache Manager) /
server (Fast Path Manager) architecture. Each message is encapsulated with a header that includes a
message type, a sequence number, a report, and the length of the message.

4.5 6WINDGATE FAST PATH CONFIGURATION

4.5.1 Shared Memory

The 6WINDGate Fast Path modules read packet processing information from a dedicated memory zone,
called the Shared Memory.

The Shared Memory allocation is SDK dependent, but its implementation is generic and the same data
structures are provided, whatever the underlying hardware or execution environment. Data structures in
the Shared Memory have been specifically designed for multicore processing. To achieve a high level of
performance, access to the Shared Memory shall be lock free. This is ensured by a dedicated memory
allocation that prevents different software modules to write in same locations and by optimized mechanisms
to update data such as routing tables in memory.
The information in the Shared Memory is continuously updated by the Linux Networking Stack - Fast Path
synchronization mechanism, and is read by the 6WINDGate Fast Path Modules when they need to process
a packet.

 Model v1.1

6WINDGate - Exceptions and Linux -

Fast Path Synchronization v1.0

 Page 11

6WIND copyright 2018.

Taking routing as an example, the 6WINDGate IPv4 and IPv6 Forwarding Fast Path Modules read entries
of the routing table in the Shared Memory. When the routing table has to be updated in the Shared Memory
(addition, deletion of a route…), this is done by the Fast Path Manager that has received a command on
the NETFPC from the Cache Manager that previously listened to the Netlink messages between the Control
Plane routing application and the Linux Networking Stack.

On the other hand, the Shared Memory is also updated by the 6WINDGate Fast Path Modules to maintain
a set of Fast Path Statistics, used by the FPS to provide aggregated statistics when required from the
Control Plane.

4.5.2 NETFPC

The Shared Memory is a non-interactive configuration mechanism. The Linux Networking Stack - Fast Path
synchronization mechanisms write information there, which is used by the 6WINDGate Fast Path modules
when they need it.
However, in some cases, an interactive communication mechanism is needed, that allows one side to trigger
an event on the other side.
NETFPC is the transport protocol used to communicate between the Fast Path Manager and the co-localized
Fast Path via a logical network interface. This is an alternative of writing into the Shared Memory when a
change in the configuration requires the Fast Path to act immediately, which typically results in updating
internal states outside the Shared Memory.

NETFPC is used for instance for:
• Setting the MTU on an interface as the Fast Path owns the drivers,

• Configuring MAC address or promiscuous mode.

NETPC uses a point to point communication between the FPM and its Fast Path modules. It’s based on the
IPv6 RAW protocol and uses link-local addresses. It works in a dedicated network namespace, isolated
from networking configuration.

4.6 VRF SYNCHRONIZATION

Virtual Routing and Forwarding (VRF) is an IP technology that allows multiple instances of a routing table
to work simultaneously within the same router. 6WINDGate provides support for VRF in all the Fast Path
modules. In Linux, VRFs are configured using network namespaces.
The Linux / Fast Path Synchronization - VRF module implements synchronization of Linux netns to Fast
Path VRFs. It based on:

• libvrf for the userland API. This library allows to manage and monitor 6WINDGate VRFs from any
Linux userland process,

• netns-vrf.ko for the kernel API. This library allows to translate Linux network namespaces to VRF
instances at the kernel level.

 Model v1.1

6WINDGate - Exceptions and Linux -

Fast Path Synchronization v1.0

 Page 12

6WIND copyright 2018.

5 FAST PATH STATISTICS AND HITFLAGS

5.1 FAST PATH STATISTICS

The Fast Path Statistics module synchronizes the statistics of the Fast Path into the Linux Networking Stack.
If this synchronization was not implemented, the system statistics would be inaccurate as the Linux
Networking Stack is not aware of the traffic managed by the Fast Path.
These statistics are implemented through the following mechanisms:

• The Fast Path modules update the Shared Memory with statistics,

• The FPS daemon reads the Shared Memory statistics, and communicates them to the FPTUN kernel
module through the loopback interface,

• The FPTUN kernel module adds Fast Path statistics to Linux Networking Stack statistics.

As a result:

• Linux applications are unchanged,

• Linux applications read statistics as usual from the Linux kernel, which include the kernel statistics
plus Fast Path Statistics.

For instance, net-snmp is used as-is without any change with standard MIBs.

5.2 HITFLAGS

When packets go through the Fast Path, the kernel object states (ARP entries, conntracks, Linux bridge…)
are not updated.

The role of the Fast Path Hitflags daemon is to update hitflags into the Linux Networking Stack when
packets hit the Fast Path.

Hitflags are implemented through the following mechanisms:

• The Fast Path modules update the Shared Memory with hitflags,

• The Hitflags daemon reads the Shared Memory entries and communicates them to the FPTUN
kernel module through the loopback interface,

• The FPTUN kernel module updates states into the Linux Networking Stack.

As a result:

• Linux applications are unchanged,

• Linux applications can read states from the Linux kernel as usual.

	1 Introduction
	1.1 Purpose of the document
	1.2 Acronyms

	2 6WINDGATE ARCHITECTURE OVERVIEW
	2.1 BENEFITS OF 6WINDGate’s LINUX – FAST PATH SYNCHRONIZATION
	2.2 6WINDGATE EXCEPTION STRATEGY AND CONTINUOUS SYNCHRONIZATION
	2.3 6WINDGate MAIN COMPONENTS

	3 EXCEPTIONS
	3.1 EXCEPTION CONCEPT
	3.2 EXCEPTION TYPE
	3.3 DATA PLANE VIRTUAL INTERFACE
	3.4 FPTUN ENCAPSULATION

	4 LINUX - Fast Path SYNCHRONISATION
	4.1 OVERVIEW
	4.2 CACHE MANAGER
	4.3 FAST PATH MANAGER
	4.4 FPC API
	4.5 6WINDGate Fast Path Configuration
	4.5.1 Shared Memory
	4.5.2 NETFPC

	4.6 VRF SYNCHRONIZATION

	5 FAST PATH STATISTICS AND HITFLAGS
	5.1 FAST PATH STATISTICS
	5.2 HITFLAGS

