
4 IEEE Network • July/August 20160890-8044/16/$25.00 © 2016 IEEE

Building on a well-established trend in the IT industry,
virtualization is rapidly entering the telecom market,

network functions virtualization (NFV) being its latest incar-
nation [1]. Leveraging cloud computing technologies, NFV
is the subject of much interest and may become a reality
in telecom operators’ networks quicker than expected two
years ago. Currently, most telecom equipment is sold in the
form of vertically integrated systems with applications run-
ning on, and tightly coupled with, purpose-built middleware
and hardware. NFV is a paradigm shift from the current
situation to a cloud model where telecom applications (a.k.a.
network functions) are virtualized and run on pools of com-
modity servers. The NFV infrastructure is assumed to consist
of pools of industry standards servers, often referred to as
common off-the-shelf (COTS) servers. Although there is no
formal definition of what a COTS server is, it is generally
accepted that these are servers commonly deployed in the IT
industry, equipped with general-purpose processors such as
X.86, Power8, and ARM, as opposed to application-Specific
integrated circuits (ASICs). In data centers, this approach is
already widely applied to many types of applications other
than those hosted in telecom operators’ networks. What
makes NFV unique are the telecom industry’s demanding
requirements for five-nine availability and for predictable
end-to-end real-time performance.

Obtaining high performance from COTS servers has been
an area of creativity and innovation in the IT industry for sev-
eral years. Many acceleration solutions have been defined and
successfully implemented on bare metal environments, tightly
coupled with application software. NFV brings additional chal-
lenges. On one hand, as application software is expected to be
independent from hardware platforms, it is not acceptable that
this software has to incorporate hardware-specific libraries to
leverage acceleration solutions. On the other hand, the pres-
ence of an abstraction layer (i.e., the hypervisor) between the
applications and hardware resources prevents the applications
from accessing all the capabilities of the acceleration solutions

available on bare metal. This article proposes an approach
to respond to both challenges at the same time, leveraging
paravirtualization technologies, extended with the concept of
synthetic devices abstracting hardware-dependent acceleration
functions and limiting whenever possible virtualization barrier
crossing.

The remainder of the article is organized as follows.The
next section provides a short summary of the European Tele-
communications Standards Institute (ETSI) NFV architectural
framework. Then we introduce the performance requirements
associated with the virtualization of network functions, and we
review the main solutions supported by the industry. Follow-
ing that we discuss the portability challenge created by such
solutions. Finally, we analyze several options toward the spec-
ification and standardization of an abstraction layer to enable
meeting both challenges at the same time.

NFV Architectural Framework
ETSI defines an NFV architectural framework (Fig. 1)
enabling virtualized network functions (VNFs) to be deployed
and executed on an NFV infrastructure (NFVI), which con-
sists of COTS hardware resources (computing, storage, and
network) wrapped with a software layer that abstracts and
logically partitions them [2]. In hypervisor-based deploy-
ments, a VNF is typically mapped to one virtual machine
(VM) in the NFVI but may also be split into multiple VNF
components (VNFCs) loaded on separate VMs (e.g., with
different scaling requirements). The deployment, execution,
and operation of VNFs on an NFVI are steered by a man-
agement and orchestration (M&O) system, the behavior of
which is driven by a set of metadata (a.k.a. NFV descrip-
tors) describing the characteristics of the network services
and their constituent VNFs. The M&O system [3] includes
an NFV orchestrator (NFVO) in charge of the life cycle of
network services, a set of VNF managers in charge of the life
cycle of the VNFs (including VNF scaling out/in), and a vir-
tualized infrastructure manager (VIM), which can be viewed
as an extended cloud management system responsible for
allocating and releasing NFVI resources upon request of the
VNFM and NFVO.

Abstract
NFV is a paradigm shift in the telecom industry, where the functions traditionally
hosted in purpose-built equipment become virtualized and run on pools of standard
IT servers. NFV creates a twofold challenge for the telecom and IT industries: virtual
appliances must deliver high performance while being portable across commodity
servers. This article proposes an approach to address both requirements at the
same time, relying on the notion of synthetic devices abstracting hardware-depen-
dent acceleration functions.

Network Functions Virtualization:
The Portability Challenge

Bruno Chatras and François Frédéric Ozog

Bruno Chatras is with Orange Labs.

Francois Frédéric Ozog is with 6WIND.

IEEE Network • July/August 2016 5

Performance Challenges and Well-Known
Solutions
NFV Acceleration
Obtaining high performance (high throughput, fast process-
ing, short transit delays, etc.) from COTS servers has been an
area of creativity and innovation in the IT industry for several
years. Many acceleration solutions have been defined and suc-
cessfully implemented in non-virtualized environments.

Acceleration solutions are implemented in hardware, soft-
ware, or both. Hardware acceleration typically relies on a
co-processor or other specialized hardware entity (hardware
accelerator) deployed to offload processing from the main
processor or to bring additional resources. Software accelera-
tion is about designing application software to make the most
efficient use of computing and other resources.

In the NFV framework, acceleration is either embedded
in the VNF in the form of software or exposed to the VNFs
by the NFVI. Acceleration is of paramount importance when
considering virtualization of network functions operating in
the data plane that have to forward a huge number of pack-
ets with minimum delay (e.g., security gateways, gateways in
mobile packet core networks, broadband access servers) and/
or perform CPU-intensive processing (video transcoding,
encryption, etc.).

Software Acceleration
Data plane acceleration programming environments such as
the Data Plane Development Kit (DPDK), initially launched
for Intel processors and now an open source project (dpdk.
org), or Open Data Plane (ODP) from Linaro for ARM pro-
cessors are examples of VNF-embedded accelerations. The
verified strategic assumption of DPDK and ODP is that the
operating system networking stack is too slow, and the net-
work hardware must be driven directly from the application.
They both enable applications to bypass this stack and retrieve
raw data from the network interface card (NIC) through a poll
mode driver rather than interrupt-based kernel drivers. With
the poll mode, the system’s central processing unit (CPU) can
periodically check for the arrival of incoming network packets
without being interrupted, and use the freed-up processing
cycles for performing other tasks.

Hardware Acceleration
Well-known hardware acceleration solutions that can be pro-
vided by the NFVI to the VNFs include, but are not limited to,
using persistent memory resources (a new high-performance
storage paradigm leveraging memory slots rather than disks),
access to additional computing resources (massive scale
co-processing), network I/O acceleration on the NIC, generic
cryptographic acceleration (e.g., in relation to encrypted stor-
age), and compression/decompression acceleration (e.g., in
support of deep packet inspection).

Network I/O acceleration on the NIC can take many differ-
ent forms. An example is the use of advanced queue managers
to enable multi-core load balancing so that selected processor
cores directly receive a fraction of the traffic (e.g., receive side
scaling [RSS] load balancing). Transmission Control Protocol
(TCP) or cryptographic processing offload is another example:
TCP offload capable NICs send to the host processor only
reassembled data rather than each packet associated with a
TCP connection. This greatly reduces the peripheral compo-
nent interconnect (PCI) bus overhead influence but comes
at the price of a limited number of concurrent connections.
Another approach consists of using remote direct memory
access (RDMA) technology to enable fast communications
between applications by enabling the NIC to transfer data

directly to or from application memory, without involving the
CPU.

In addition, a fraction of NFV network traffic workloads is
made of specific protocols such as Diameter over the Stream
Control Transmission Protocol (SCTP) and/or requires tun-
nelling support such as general packet radio service (GPRS)
Tunneling Protocol (GTP) and multiprotocol label switching
(MPLS). Those workloads defeat RSS load balancing tech-
niques that have been designed for typical enterprise work-
loads and thus require new versions of hardware accelerators
in the form of extended packet to core load balancing mecha-
nisms hosted on the NICs.

Portability Challenge
Software Dependencies
Use of hardware acceleration techniques by applications can
make them hardware-dependent. This is not a major concern
in non-virtualized environments because solutions are validat-
ed against a specific hardware platform, but becomes a real
issue in an NFV framework. Indeed, the NFV framework is
expected to provide the capability to load, execute, and move
VNFs across different servers in multivendor environments, a
capability known as portability.

In virtualized environments, the hypervisor is expected to
abstract hardware resources including hardware accelerators.
However, VMs on hypervisors present to the guest OS a set
of virtualized devices that today do not offer all acceleration
mechanisms available on real hardware (e.g., TCP offload
on network hardware) and lack many virtualized versions of
acceleration devices such as cryptographic accelerators. As a
result, solutions aimed at exposing the hardware directly into
VMs have been defined.

A well-known solution is the single root I/O virtualization
(SR-IOV) technology [4]. SR-IOV allows VMs, once creat-
ed by the hypervisor, to share a piece of hardware without
involving the hypervisor directly for all activities. For exam-
ple, a physical NIC can expose a number of virtual func-
tions that can be “attached” to VMs. The VMs will see each
attached virtual function as if it was a physical card (same
brand, same model as the real physical card). In other words,
SR-IOV allows the creation of multiple “shadow” cards of a
physical network card. Each shadow card has its own medi-
um access control (MAC) address. Other solutions such as

Figure 1. NFV architecture framework.

NFV
management

and
orchestration

VNF

Virtual
compute

Compute Storage Network

Virtual
storage

Virtual
network

Virtual network functions (VNFs)

NFV infrastructure (NFVI)

Virtualization layer

Hardware resources

Network service and
VNF descriptors

VNF VNF VNF VNF

IEEE Network • July/August 20166

multi-root I/O virtualization (MR-IOV) or PCI pass-through
are used to bypass the hypervisor and give direct access to
the network hardware. Despite limitations in the number of
virtual functions that can be created, and hence the number
of VNFs that can use the real hardware, the aforementioned
solutions allow VNFs to exhibit the same performance as
their bare metal counterparts.

By leveraging direct hardware access techniques, perfor-
mance objectives are met, but VNF instantiation and (live)
migration become more complex or even impossible. Fur-
thermore, as illustrated in Fig. 2, this approach requires hard-
ware-specific drivers to be embedded in the VNF software,
which implies that a VNF cannot leverage a new hardware
accelerator available in an NFVI node (e.g., accelerator C in
Fig. 2) until the corresponding driver has been integrated in
the VNF software.

NFV Management and Orchestration Aspects
In an NFV framework, decisions on where to instantiate a
VNF are made by the M&O system, based on the contents
of VNF descriptors (VNFDs) and information found in the
NFVI resource catalog. A VNFD is a template that describes
the attributes and requirements necessary to realize a VNF.
It is filled by the VNF provider and packaged with the actual
VNF code shipped to the operator. Ideally, a VNFD should
contain hardware/technology-independent requirements to
guarantee the flexible deployment and portability of VNF
instances on multi-vendor and diverse NFVI environments,
for example, with diverse computing resource generations
and diverse virtualization technologies However, the version
of the VNFD template published by ETSI at the end of 2014
was designed to enable VNF providers to specify accelera-
tion requrements expressed in an implementation-dependent
manner to accommodate the direct hardware access approach.
Examples of such requirements are an indication that the
VNF software has been developed and optimized for a spec-
ified CPU model and instruction extension set; an indication
that the VNF has been developed and optimized with a polled
mode driver infrastructure applicable to a specified NIC type;
or an indication that the VNF requires that an SR-IOV virtual
function from a specified PCI express (PCIe) device be allo-
cated to the VM.

Obviously, this approach defeats the portability goal and
key benefits of NFV. VNF providers need to develop multiple
versions of the same VNF, each targeting a different type of
server. Network operators need to resort to stopgap measures
such as using a homogeneous server pool or onboarding multi-

ple images for the same VNFC, each targeting a different type
of server. Furthermore, once instantiated, a VNF leveraging
SR-IOV cannot be migrated to another server.

The challenge we are facing is thus: is it possible, and if
so, how, to achieve high performance by leveraging hardware
accelerators and at the same time have hardware-independent
VNFs?

Toward an Abstraction Layer
The Synthetic Device Concept
The ETSI specification of the NFV infrastructure compute
domain advocates the introduction in future versions of NFV
specifications of a hardware acceleration abstraction layer
and of a common abstract application programming interface
(API) enabling the VNFC code to access acceleration services
provided by the infrastructure [5].

In the IT industry, DirectX and OpenGL for graphics cards,
and OpenCL for massively parallel computing are successful
examples where it has been possible to define a de facto stan-
dard abstract interface for accessing very complex, ever evolv-
ing hardware objects.

The industry has also been successful at defining synthetic
network interfaces such as virtio net [6, 7] that do not emulate
any hardware but define a standard abstract interface to pack-
et I/O. Those devices are used by the applications running in
the VMs and rely on the hypervisor to actually implement the
interface to hardware accelerators.

It is thus tempting to build on those successes to achieve the
initial NFV portability goal without loss of performance. This
would require providing VMs with synthetic devices for any
type of hardware accelerator and integrating those synthetic
devices with frameworks such as DPDK, OpenCL, and others
(Fig. 3).

From Concept to Implementation
To achieve this, several steps would have to be realized for
each type of network accelerator.

The first step is to define an abstract interface which
specifies the possible actions that a VNF can perform
and the associated data model. For an abstract interface
dealing with network packets, this translates, for example,

Figure 2. Hardware-specific drivers in the VNF software.

N
FV

I n
od

e

Hypervisor

A B C

VNF

HW
driver

HW
driver

VNF

HW
driver

HW
driver

Figure 3. Abstraction layer in an NFVI node.

NIC CPU RAM Flash
DIMM Crypto••

Synthetic device back end

Hypervisor domain

NFVI node

Hypervisor interface VMVM

Synthetic device

Abstract
Interface

Abstract
Interface

VNFC
code

Guest
OS

Synthetic device

VNFC
code

Guest
OS

IEEE Network • July/August 2016 7

into simplistic “AreTherePackets,” “GiveMePackets,” and
“SendPackets” primitives; for cryptography this could be
primitives such as “LoadSecurityAssociation,” “Encrypt-
DataAtOffset,” and so on. Of course, many other primitives
are required, and a rich data model has to be specified.
Defining such an interface involves selecting a subset of
known features and methods currently supported by com-
mercially available hardware acceleration solutions, which
in itself is a technical challenge.

The second step is to create a synthetic device that imple-
ments the abstract interface via diverse techniques such as PCI
configuration space object, I/O registers emulation, physical
address space ranges, message passing, and interrupt trigger-
ing.

The third step is to create a synthetic device “backend”
that will support many instances of a synthetic device and exe-
cute in the context of the hypervisor, its supporting operat-
ing system (if any), or even another VM (e.g., if SR-IOV or
any hypervisor bypass mechanism is used simultaneously). Its
role is to map each synthetic guest device to the underlying
hardware object and control its usage (e.g., ensure that wrong
behavior of a VNF has no impact on other VNFs). The back-
end may in turn instantiate a virtual device in the context of
the hypervisor or the host operating system. For instance, this
is required when a VNF NIC synthetic device needs a compan-
ion NIC virtual device in the hypervisor domain to be integrat-
ed with a virtual networking component. Libvirt [8] is an open
source framework that can be instrumental in implementing
the synthetic device, its backend, and the required communica-
tions. Moreover, this framework also allows creating hypervi-
sor-independent synthetic devices [9]. For network operators,
a major benefit of this approach is that hardware-specific driv-
ers reside in the NFV infrastructure rather than in the VNFs.
As shown in Fig. 4, this enables them to install new or upgrad-
ed hardware accelerators without any impact on these VNFs.

The fourth step is to integrate synthetic devices in existing
software frameworks such as DPDK and ODP by providing
appropriate drivers (e.g., poll mode drivers for DPDK; Fig.
5). These frameworks may have to integrate new acceleration
APIs or have to adapt existing APIs to cover new functional-
ities. For instance, as there is currently no compress/decom-
press API in DPDK, it may be necessary to include one to
leverage related hardware acceleration features exposed as a
synthetic device.

A further refinement of this abstraction layer is to allow
intra-VNF acceleration when the acceleration leverages spe-
cial processor instruction sets. The instruction set can be

dependent on the processor generation, or result from pro-
gramming on-die or closely connected field-programmable
gate array (FPGA) capabilities. Intra-VNF acceleration will
rely on the synthetic device driver executing some form of
software plugin that implements the abstract interface lever-
aging the processor-specific instruction set. From a technical
standpoint, positioning the catalog of all available plugins in
the hypervisor domain or in the guest is very similar. However,
in the context of NFV, one has to remember that the VNF
software is usually supplied to a network operator by a third
party VNF provider, and the operator is not expected to mod-
ify it, as opposed to the hypervisor domain that remains under
its control. This is why the proposed abstraction layer positions
the catalog of plugins in the hypervisor domain, relying on the
synthetic device backend to supply the plugin to the synthetic
device driver. Those plugins are conceptually similar to Linux
Kernel virtual dynamically linked shared objects (VDSOs),
which are kernel routines supplied to user applications as a
replacement for some system calls (e.g., gettimeofday) to avoid
crossing the user/kernel boundary.

Integration in the NFV Architectural Framework
The synthetic device approach does not require any fundamen-
tal change to the NFV architectural framework. However, it
modifies the nature of the information that VNF vendors will
have to provide in the VNFD and the decision logic that the
VIM will execute to make decisions about the placement of
VNF components on the servers of the NFVI. Indeed, rather
than including references to specific hardware accelerators in
the VNFD, VNF providers will list the abstract interfaces (i.e.,
acceleration capabilities) they need (crypto, video transcoding,
etc.) along with key performance indicators (12 Gb/s, 10,000
tunnels, etc.), and the VIM will match this information with
compute nodes inventory information.

Standardization and Experiments
Further development of this concept is taking place within
the framework of the second specification phase of the ETSI
NFV Industry Specification Group. Indeed, processing accel-
eration and VNF portability are among the major topics on
the ETSI NFV Phase 2 agenda. One of the items in the Phase
2 work programme aims at specifying a set of abstract inter-
faces enabling a VNF to leverage acceleration services from
the infrastructure, regardless of their implementation. Beyond
the specification work, testing and experiments will be needed
to validate this concept. This is one of the subjects being con-
sidered within the framework of the OPNFV project, an open
source project hosted by the Linux Foundation, focused on
developing an integrated open platform for NFV.

Figure 4. Hardware-specific drivers in NFVI.

VNF

Generic
driver

N
FV

I n
od

e

Hypervisor
domain

VNF

HW
driver

HW
driver

HW
driver

Generic
driver

Backend

Figure 5. Drivers for synthetic devices.

VNFC
code

DPDK

PMD

VNFC
code

Guest OS

Driver

Synthetic deviceSynthetic device

Guest OS

IEEE Network • July/August 20168

Conclusion
This article has reviewed the twofold challenge that NFV has cre-
ated for the telecom and IT industries: virtual appliances must
deliver high performance while being portable across commodity
servers. The concept of a synthetic device we introduce in this arti-
cle provides a promising approach to reconciling the need for pro-
cessing acceleration solutions with VNF portability requirements.

References
[1] “NFV: An Introduction, Benefits, Enablers, Challenges & Call for Action,”

NFV white paper; http://portal.etsi.org/NFV/NFV_White_Paper.pdf
[2] ETSI GS NFV 002, “Network Functions Virtualisation (NFV); Architectur-

al Framework,” http://www.etsi.org/deliver/etsi_gs/NFV/001_099/
002/01.02.01_60/gs_nfv002v010201p.pdf

[3] ETSI GS NFV MAN 001, “Network Functions Virtualisation (NFV); Man-
agement & Orchestration,” http://www.etsi.org/deliver/etsi_gs/NFV-
MAN/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf

[4] Y. Dong et al., “High Performance Network Virtualization with SR-IOV,”
Proc. 2010 IEEE 16th Int’l. Symp. High Performance Computer Architec-
ture, 2010, pp. 1–10.

[5] ETSI GS NFV INF 003, “Network Functions Virtualisation (NFV); Infra-
structure; Compute Domain,” http://www.etsi.org/deliver/etsi_gs/NFV-
INF/001_099/003/01.01.01_60/gs_nfv-inf003v010101p.pdf

[6] The virtualization API: virtio-net http://wiki.libvirt.org/page/Virtio
[7] G. Motika et al., “Virtio Network Paravirtualization Driver: Implementation

and Performance of a De-Facto Standard,” J. Computer Standards & Inter-
faces, vol. 34, no. 1, Jan., 2012, pp. 36–47.

[8] Libvirt : The Virtualization API http://libvirt.org/index.html
[9] R. Russel, “Virtio: Towards a De-Facto Standard for Virtual I/O Devices,”

ACM SIGOPS Op. Sys. Rev., vol. 42, no. 5, July 2008, pp. 95–103;
ACM Digital Library: http://dl.acm.org/citation.cfm?id=1400108.

Biographies
Bruno Chatras (bruno.chatras@orange.com) is a senior standardization
manager at Orange Labs Networks and a member of the Orange experts’
community on Future Networks. He is the Chairman of the ETSI Technical Com-
mittee on Network Technologies and a Vice-Chairman of the ETSI ISG NFV.
He joined Orange Labs in 1985, where he started his career by developing
GSM standards. Since then he has held several management positions and led
the Intelligent Networks R&D Unit.

François-Frédéric drives 6WIND business development in the telecom and
cloud markets. He is an entrepreneur with 30 years of experience in technical,
sales, and marketing positions. He is the Rapporteur of the ETSI NFV work item
on VNF Acceleration Interface and is the author of seven patents. He holds a
degree in computing science from Universit de Paris VII.

