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Building on a well-established trend in the IT industry, 
virtualization is rapidly entering the telecom market, 

network functions virtualization (NFV) being its latest incar-
nation [1]. Leveraging cloud computing technologies, NFV 
is the subject of much interest and may become a reality 
in telecom operators’ networks quicker than expected two 
years ago. Currently, most telecom equipment is sold in the 
form of vertically integrated systems with applications run-
ning on, and tightly coupled with, purpose-built middleware 
and hardware. NFV is a paradigm shift from the current 
situation to a cloud model where telecom applications (a.k.a. 
network functions) are virtualized and run on pools of com-
modity servers. The NFV infrastructure is assumed to consist 
of pools of industry standards servers, often referred to as 
common off-the-shelf (COTS) servers. Although there is no 
formal definition of what a COTS server is, it is generally 
accepted that these are servers commonly deployed in the IT 
industry, equipped with general-purpose processors such as 
X.86, Power8, and ARM, as opposed to application-Specific 
integrated circuits (ASICs). In data centers, this approach is 
already widely applied to many types of applications other 
than those hosted in telecom operators’ networks. What 
makes NFV unique are the telecom industry’s demanding 
requirements for five-nine availability and for predictable 
end-to-end real-time performance.

Obtaining high performance from COTS servers has been 
an area of creativity and innovation in the IT industry for sev-
eral years. Many acceleration solutions have been defined and 
successfully implemented on bare metal environments, tightly 
coupled with application software. NFV brings additional chal-
lenges. On one hand, as application software is expected to be 
independent from hardware platforms, it is not acceptable that 
this software has to incorporate hardware-specific libraries to 
leverage acceleration solutions. On the other hand, the pres-
ence of an abstraction layer (i.e., the hypervisor) between the 
applications and hardware resources prevents the applications 
from accessing all the capabilities of the acceleration solutions 

available on bare metal. This article proposes an approach 
to respond to both challenges at the same time, leveraging 
paravirtualization technologies, extended with the concept of 
synthetic devices abstracting hardware-dependent acceleration 
functions and limiting whenever possible virtualization barrier 
crossing.

The remainder of the article is organized as follows.The 
next section provides a short summary of the European Tele-
communications Standards Institute (ETSI) NFV architectural 
framework. Then we introduce the performance requirements 
associated with the virtualization of network functions, and we 
review the main solutions supported by the industry. Follow-
ing that we discuss the portability challenge created by such 
solutions. Finally, we analyze several options toward the spec-
ification and standardization of an abstraction layer to enable 
meeting both challenges at the same time.

NFV Architectural Framework
ETSI defines an NFV architectural framework (Fig. 1) 
enabling virtualized network functions (VNFs) to be deployed 
and executed on an NFV infrastructure (NFVI), which con-
sists of COTS hardware resources (computing, storage, and 
network) wrapped with a software layer that abstracts and 
logically partitions them [2]. In hypervisor-based deploy-
ments, a VNF is typically mapped to one virtual machine 
(VM) in the NFVI but may also be split into multiple VNF 
components (VNFCs) loaded on separate VMs (e.g., with 
different scaling requirements). The deployment, execution, 
and operation of VNFs on an NFVI are steered by a man-
agement and orchestration (M&O) system, the behavior of 
which is driven by a set of metadata (a.k.a. NFV descrip-
tors) describing the characteristics of the network services 
and their constituent VNFs. The M&O system [3] includes 
an NFV orchestrator (NFVO) in charge of the life cycle of 
network services, a set of VNF managers in charge of the life 
cycle of the VNFs (including VNF scaling out/in), and a vir-
tualized infrastructure manager (VIM), which can be viewed 
as an extended cloud management system responsible for 
allocating and releasing NFVI resources upon request of the 
VNFM and NFVO.
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Performance Challenges and Well-Known 
Solutions
NFV Acceleration
Obtaining high performance (high throughput, fast process-
ing, short transit delays, etc.) from COTS servers has been an 
area of creativity and innovation in the IT industry for several 
years. Many acceleration solutions have been defined and suc-
cessfully implemented in non-virtualized environments.

Acceleration solutions are implemented in hardware, soft-
ware, or both. Hardware acceleration typically relies on a 
co-processor or other specialized hardware entity (hardware 
accelerator) deployed to offload processing from the main 
processor or to bring additional resources. Software accelera-
tion is about designing application software to make the most 
efficient use of computing and other resources.

In the NFV framework, acceleration is either embedded 
in the VNF in the form of software or exposed to the VNFs 
by the NFVI. Acceleration is of paramount importance when 
considering virtualization of network functions operating in 
the data plane that have to forward a huge number of pack-
ets with minimum delay (e.g., security gateways, gateways in 
mobile packet core networks, broadband access servers) and/
or perform CPU-intensive processing (video transcoding, 
encryption, etc.).

Software Acceleration
Data plane acceleration programming environments such as 
the Data Plane Development Kit (DPDK), initially launched 
for Intel processors and now an open source project (dpdk.
org), or Open Data Plane (ODP) from Linaro for ARM pro-
cessors are examples of VNF-embedded accelerations. The 
verified strategic assumption of DPDK and ODP is that the 
operating system networking stack is too slow, and the net-
work hardware must be driven directly from the application. 
They both enable applications to bypass this stack and retrieve 
raw data from the network interface card (NIC) through a poll 
mode driver rather than interrupt-based kernel drivers. With 
the poll mode, the system’s central processing unit (CPU) can 
periodically check for the arrival of incoming network packets 
without being interrupted, and use the freed-up processing 
cycles for performing other tasks.

Hardware Acceleration
Well-known hardware acceleration solutions that can be pro-
vided by the NFVI to the VNFs include, but are not limited to, 
using persistent memory resources (a new high-performance 
storage paradigm leveraging memory slots rather than disks), 
access to additional computing resources (massive scale 
co-processing), network I/O acceleration on the NIC, generic 
cryptographic acceleration (e.g., in relation to encrypted stor-
age), and compression/decompression acceleration (e.g., in 
support of deep packet inspection).

Network I/O acceleration on the NIC can take many differ-
ent forms. An example is the use of advanced queue managers 
to enable multi-core load balancing so that selected processor 
cores directly receive a fraction of the traffic (e.g., receive side 
scaling [RSS] load balancing). Transmission Control Protocol 
(TCP) or cryptographic processing offload is another example: 
TCP offload capable NICs send to the host processor only 
reassembled data rather than each packet associated with a 
TCP connection. This greatly reduces the peripheral compo-
nent interconnect (PCI) bus overhead influence but comes 
at the price of a limited number of concurrent connections. 
Another approach consists of using remote direct memory 
access (RDMA) technology to enable fast communications 
between applications by enabling the NIC to transfer data 

directly to or from application memory, without involving the 
CPU.

In addition, a fraction of NFV network traffic workloads is 
made of specific protocols such as Diameter over the Stream 
Control Transmission Protocol (SCTP) and/or requires tun-
nelling support such as general packet radio service (GPRS) 
Tunneling Protocol (GTP) and multiprotocol label switching 
(MPLS). Those workloads defeat RSS load balancing tech-
niques that have been designed for typical enterprise work-
loads and thus require new versions of hardware accelerators 
in the form of extended packet to core load balancing mecha-
nisms hosted on the NICs.

Portability Challenge
Software Dependencies
Use of hardware acceleration techniques by applications can 
make them hardware-dependent. This is not a major concern 
in non-virtualized environments because solutions are validat-
ed against a specific hardware platform, but becomes a real 
issue in an NFV framework. Indeed, the NFV framework is 
expected to provide the capability to load, execute, and move 
VNFs across different servers in multivendor environments, a 
capability known as portability.

In virtualized environments, the hypervisor is expected to 
abstract hardware resources including hardware accelerators. 
However, VMs on hypervisors present to the guest OS a set 
of virtualized devices that today do not offer all acceleration 
mechanisms available on real hardware (e.g., TCP offload 
on network hardware) and lack many virtualized versions of 
acceleration devices such as cryptographic accelerators. As a 
result, solutions aimed at exposing the hardware directly into 
VMs have been defined.

A well-known solution is the single root I/O virtualization 
(SR-IOV) technology [4]. SR-IOV allows VMs, once creat-
ed by the hypervisor, to share a piece of hardware without 
involving the hypervisor directly for all activities. For exam-
ple, a physical NIC can expose a number of virtual func-
tions that can be “attached” to VMs. The VMs will see each 
attached virtual function as if it was a physical card (same 
brand, same model as the real physical card). In other words, 
SR-IOV allows the creation of multiple “shadow” cards of a 
physical network card. Each shadow card has its own medi-
um access control (MAC) address. Other solutions such as 

Figure 1. NFV architecture framework.
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multi-root I/O virtualization (MR-IOV) or PCI pass-through 
are used to bypass the hypervisor and give direct access to 
the network hardware. Despite limitations in the number of 
virtual functions that can be created, and hence the number 
of VNFs that can use the real hardware, the aforementioned 
solutions allow VNFs to exhibit the same performance as 
their bare metal counterparts.

By leveraging direct hardware access techniques, perfor-
mance objectives are met, but VNF instantiation and (live) 
migration become more complex or even impossible. Fur-
thermore, as illustrated in Fig. 2, this approach requires hard-
ware-specific drivers to be embedded in the VNF software, 
which implies that a VNF cannot leverage a new hardware 
accelerator available in an NFVI node (e.g., accelerator C in 
Fig. 2) until the corresponding driver has been integrated in 
the VNF software.

NFV Management and Orchestration Aspects
In an NFV framework, decisions on where to instantiate a 
VNF are made by the M&O system, based on the contents 
of VNF descriptors (VNFDs) and information found in the 
NFVI resource catalog. A VNFD is a template that describes 
the attributes and requirements necessary to realize a VNF. 
It is filled by the VNF provider and packaged with the actual 
VNF code shipped to the operator. Ideally, a VNFD should 
contain hardware/technology-independent requirements to 
guarantee the flexible deployment and portability of VNF 
instances on multi-vendor and diverse NFVI environments, 
for example, with diverse computing resource generations 
and diverse virtualization technologies However, the version 
of the VNFD template published by ETSI at the end of 2014 
was designed to enable VNF providers to specify accelera-
tion requrements expressed in an implementation-dependent 
manner to accommodate the direct hardware access approach. 
Examples of such requirements are an indication that the 
VNF software has been developed and optimized for a spec-
ified CPU model and instruction extension set; an indication 
that the VNF has been developed and optimized with a polled 
mode driver infrastructure applicable to a specified NIC type; 
or an indication that the VNF requires that an SR-IOV virtual 
function from a specified PCI express (PCIe) device be allo-
cated to the VM.

Obviously, this approach defeats the portability goal and 
key benefits of NFV. VNF providers need to develop multiple 
versions of the same VNF, each targeting a different type of 
server. Network operators need to resort to stopgap measures 
such as using a homogeneous server pool or onboarding multi-

ple images for the same VNFC, each targeting a different type 
of server. Furthermore, once instantiated, a VNF leveraging 
SR-IOV cannot be migrated to another server.

The challenge we are facing is thus: is it possible, and if 
so, how, to achieve high performance by leveraging hardware 
accelerators and at the same time have hardware-independent 
VNFs?

Toward an Abstraction Layer
The Synthetic Device Concept
The ETSI specification of the NFV infrastructure compute 
domain advocates the introduction in future versions of NFV 
specifications of a hardware acceleration abstraction layer 
and of a common abstract application programming interface 
(API) enabling the VNFC code to access acceleration services 
provided by the infrastructure [5].

In the IT industry, DirectX and OpenGL for graphics cards, 
and OpenCL for massively parallel computing are successful 
examples where it has been possible to define a de facto stan-
dard abstract interface for accessing very complex, ever evolv-
ing hardware objects.

The industry has also been successful at defining synthetic 
network interfaces such as virtio net [6, 7] that do not emulate 
any hardware but define a standard abstract interface to pack-
et I/O. Those devices are used by the applications running in 
the VMs and rely on the hypervisor to actually implement the 
interface to hardware accelerators.

It is thus tempting to build on those successes to achieve the 
initial NFV portability goal without loss of performance. This 
would require providing VMs with synthetic devices for any 
type of hardware accelerator and integrating those synthetic 
devices with frameworks such as DPDK, OpenCL, and others 
(Fig. 3).

From Concept to Implementation
To achieve this, several steps would have to be realized for 
each type of network accelerator.

The first step is to define an abstract interface which 
specifies the possible actions that a VNF can perform 
and the associated data model. For an abstract interface 
dealing with network packets, this translates, for example, 

Figure 2. Hardware-specific drivers in the VNF software.
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into simplistic “AreTherePackets,” “GiveMePackets,” and 
“SendPackets” primitives; for cryptography this could be 
primitives such as “LoadSecurityAssociation,” “Encrypt-
DataAtOffset,” and so on. Of course, many other primitives 
are required, and a rich data model has to be specified. 
Defining such an interface involves selecting a subset of 
known features and methods currently supported by com-
mercially available hardware acceleration solutions, which 
in itself is a technical challenge. 

The second step is to create a synthetic device that imple-
ments the abstract interface via diverse techniques such as PCI 
configuration space object, I/O registers emulation, physical 
address space ranges, message passing, and interrupt trigger-
ing.

The third step is to create a synthetic device “backend” 
that will support many instances of a synthetic device and exe-
cute in the context of the hypervisor, its supporting operat-
ing system (if any), or even another VM (e.g., if SR-IOV or 
any hypervisor bypass mechanism is used simultaneously). Its 
role is to map each synthetic guest device to the underlying 
hardware object and control its usage (e.g., ensure that wrong 
behavior of a VNF has no impact on other VNFs). The back-
end may in turn instantiate a virtual device in the context of 
the hypervisor or the host operating system. For instance, this 
is required when a VNF NIC synthetic device needs a compan-
ion NIC virtual device in the hypervisor domain to be integrat-
ed with a virtual networking component. Libvirt [8] is an open 
source framework that can be instrumental in implementing 
the synthetic device, its backend, and the required communica-
tions. Moreover, this framework also allows creating hypervi-
sor-independent synthetic devices [9]. For network operators, 
a major benefit of this approach is that hardware-specific driv-
ers reside in the NFV infrastructure rather than in the VNFs. 
As shown in Fig. 4, this enables them to install new or upgrad-
ed hardware accelerators without any impact on these VNFs.

The fourth step is to integrate synthetic devices in existing 
software frameworks such as DPDK and ODP by providing 
appropriate drivers (e.g., poll mode drivers for DPDK; Fig. 
5). These frameworks may have to integrate new acceleration 
APIs or have to adapt existing APIs to cover new functional-
ities. For instance, as there is currently no compress/decom-
press API in DPDK, it may be necessary to include one to 
leverage related hardware acceleration features exposed as a 
synthetic device.

A further refinement of this abstraction layer is to allow 
intra-VNF acceleration when the acceleration leverages spe-
cial processor instruction sets. The instruction set can be 

dependent on the processor generation, or result from pro-
gramming on-die or closely connected field-programmable 
gate array (FPGA) capabilities. Intra-VNF acceleration will 
rely on the synthetic device driver executing some form of 
software plugin that implements the abstract interface lever-
aging the processor-specific instruction set. From a technical 
standpoint, positioning the catalog of all available plugins in 
the hypervisor domain or in the guest is very similar. However, 
in the context of NFV, one has to remember that the VNF 
software is usually supplied to a network operator by a third 
party VNF provider, and the operator is not expected to mod-
ify it, as opposed to the hypervisor domain that remains under 
its control. This is why the proposed abstraction layer positions 
the catalog of plugins in the hypervisor domain, relying on the 
synthetic device backend to supply the plugin to the synthetic 
device driver. Those plugins are conceptually similar to Linux 
Kernel virtual dynamically linked shared objects (VDSOs), 
which are kernel routines supplied to user applications as a 
replacement for some system calls (e.g., gettimeofday) to avoid 
crossing the user/kernel boundary.

Integration in the NFV Architectural Framework
The synthetic device approach does not require any fundamen-
tal change to the NFV architectural framework. However, it 
modifies the nature of the information that VNF vendors will 
have to provide in the VNFD and the decision logic that the 
VIM will execute to make decisions about the placement of 
VNF components on the servers of the NFVI. Indeed, rather 
than including references to specific hardware accelerators in 
the VNFD, VNF providers will list the abstract interfaces (i.e., 
acceleration capabilities) they need (crypto, video transcoding, 
etc.) along with key performance indicators (12 Gb/s, 10,000 
tunnels, etc.), and the VIM will match this information with 
compute nodes inventory information.

Standardization and Experiments
Further development of this concept is taking place within 
the framework of the second specification phase of the ETSI 
NFV Industry Specification Group. Indeed, processing accel-
eration and VNF portability are among the major topics on 
the ETSI NFV Phase 2 agenda. One of the items in the Phase 
2 work programme aims at specifying a set of abstract inter-
faces enabling a VNF to leverage acceleration services from 
the infrastructure, regardless of their implementation. Beyond 
the specification work, testing and experiments will be needed 
to validate this concept. This is one of the subjects being con-
sidered within the framework of the OPNFV project, an open 
source project hosted by the Linux Foundation, focused on 
developing an integrated open platform for NFV.

Figure 4. Hardware-specific drivers in NFVI.
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Conclusion
This article has reviewed the twofold challenge that NFV has cre-
ated for the telecom and IT industries: virtual appliances must 
deliver high performance while being portable across commodity 
servers. The concept of a synthetic device we introduce in this arti-
cle provides a promising approach to reconciling the need for pro-
cessing acceleration solutions with VNF portability requirements.
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