
#SPEEDMATTERS For Networks 6WIND.com

The new generation of servers based on increasingly

powerful multicore processors and high speed

Ethernet technologies (10G, 40G, and 100G soon)

enables the development of cost-effective network

and telecom equipment using generic bare metal and

virtualized servers. Standard OS networking stacks

have not been designed to extract the required level

of network performance from this new generation of

hardware platforms to compete with legacy

architectures.

Developing and maintaining a scalable networking

stack optimized for multicore hardware architectures

is a very complex task. It's very important to

understand this complexity before deciding to

develop stacks internally or to use off-the-shelf

solutions.

Multicore processor vendors provide a software

environment to develop network applications. For

instance Intel® provides its Data Plane Development

Kit (DPDK) that is a set of libraries and drivers for fast

packet processing. Software Development Kits (SDKs)

such as the DPDK are mandatory to make the best use

of hardware resources to receive and transmit packets,

but it is important to note that they are not a

networking stack.

In the first section, this white paper details the

capabilities of the DPDK and why DPDK is not a

networking stack.

Then, it reviews the key architecture design challenges

to develop a high performance networking stack that

can be easily integrated with standard and virtualized

software environments and management frameworks.

This stack must be designed to benefit from future

evolutions of processor and NIC (Network Interface

Card) technologies and integrate new protocols.

Finally, the effort for two development options, in-

house versus using 6WINDGate, is compared using

security gateway equipment as an example.

DPDK

DPDK is provided under an Open Source BSD

WHITE PAPER
Avoid Development Hell

To Realize Software ROI

licensed project called dpdk.org.

The DPDK framework creates a set of libraries for

specific hardware/software environments through the

creation of an Environment Abstraction Layer (EAL). The

EAL hides the environmental specifics and provides a

standard programming interface to libraries, available

hardware accelerators and other hardware and

operating system (Linux, FreeBSD) elements. Once the

EAL is created for a specific environment, developers

link to the library to create their applications. For

instance, the EAL provides the framework to support

Linux, FreeBSD, Intel IA (32- or 64-bit) or IBM Power8.

Other architectures will be supported soon. The EAL

also provides additional services including boot

support, PCIe bus access, trace and debug functions

and alarm operations.

The DPDK implements a low overhead run-to-

completion model for fast data plane performance and

accesses devices via polling to eliminate the

performance overhead of interrupt processing.

The DPDK also includes software examples that

highlight best practices for software architecture, tips

for data structure design and storage, application

profiling and performance tuning utilities and tips that

address common network performance deficits.

The DPDK includes data plane libraries and optimized

NIC drivers for the following:

Ÿ A queue manager implements lockless queues,

Ÿ A buffer manager pre-allocates fixed size buffers,

Ÿ A memory manager allocates pools of objects in

memory and uses a ring to store free objects;

ensures that objects are spread equally on all DRAM

channels,

Ÿ Poll Mode Drivers (PMD) are designed to work

without asynchronous, interrupt-based signaling

mechanisms,

Ÿ A packet framework - set of libraries that assist with

developing packet processing.

The EAL allows loading some plugins without

recompiling any applications that use the DPDK

1

#SPEEDMATTERS For Networks 6WIND.com2

libraries. The following plugins are available:

Ÿ Ethernet layer PMD supporting Virtio

paravirtualized NIC,

Ÿ Ethernet layer PMD supporting VMXNET3

paravirtualized NIC,

Ÿ Ethernet layer PMD based on shared memory and

packet copy for a virtual NIC.

DPDK is mandatory to receive and transmit packets at

a very high speed but DPDK does not include any

implementation of network protocols. It only provides

basic examples to explain how networking software

can use the DPDK low-level services. A networking

stack of a standard operating system cannot be

reused on top of DPDK because its internal

architecture has not been designed to scale on a large

number of cores. So, network software developers

have to design and implement from the ground up a

new networking stack on top of DPDK and integrate

this stack with the software environment and the

management framework.

High Performance Networking Stack Architecture

Design

This section reviews the challenges to be solved to

develop this kind of software.

Required Software Skills

Developing high performance data plane software

requires very specific networking and software skills.

Developers must have a skill set combining embedded

software background, expertise for a large number of

network protocols and hardware/software integration

experience. Although having practice in embedded

Linux software is mandatory, developing on top of

DPDK is very different from developing in the Linux

kernel (refer to “Software Design” section). Software

developers need to have an in-depth understanding

of how the processor works internally (not only how it

can be programmed) combined with PCIe, firmware

and Ethernet NIC skills.

Software team managers should not underestimate

the learning curve for a development team to reach a

good level of productivity. At 6WIND, we train teams

of embedded software engineers to develop data

plane software on top of DPDK and our experience

shows an experienced engineer needs between 3 to 6

months to be fully productive.

Software Design

To achieve the highest performance, developers have

to use specialized techniques because high

performance data plane software is very specific.

Reusing available networking stacks is impossible

because their architecture has not been designed to

scale on multicore processors:

Ÿ Specific programming models like run-to-completion

leveraging multi-core architectures must be well

understood.

Ÿ As Layer 3 (IP) performance and latency are directly

related to the number of processor cycles used to

implement the software, packet flow processes must

be designed and optimized to minimize the number

of processor cycles.

Ÿ Layer 3 fragmentation is an example to illustrate

potential design problems. A first design of an IP

stack can be done without fragmentation and it will

work in 99% of the use cases. However, adding

fragmentation to have a fully compliant IP stack will

cause many problems such as hardware checksum

offloading. IP fragments must be memorized and

reordered instead of copying fragments into a linear

area where all bytes fit. Multi-segment packets must

be correctly implemented. Fragmentation will also

have impacts in the higher layers. TCP is now getting

horribly complex as you must reassemble IP

fragments and TCP segments.

Ÿ Modern software stacks have now to be IPv6

compliant. Unfortunately, IPv6 is a completely

different software stack compared to IPv4

(fragmentation, automatic address acquisition, end-

to-end and hop by hop options…) and requires

specific optimizations.

Ÿ Buffer copies and locks are restricted to the very

minimum and with the most efficient scheme (simple

locks, read-write locks or Read-Copy-Update), or

implementation method (transactional memory). For

instance, table updates must be implemented to

avoid any lock that would freeze the system.

Ÿ Layer 4 protocol (TCP/UDP) performance and latency

are directly related to an efficient memory utilization

and locking scheme because for each packet a

socket has to be found and updated.

Ÿ High performance implies to manage a large number

of network objects (interfaces, routing tables,

filtering tables, security tunnels and associations…);

efficient algorithms to parse large tables must be

implemented.

Ÿ Hardware / software integration is critical to obtain

high performance: location of data, use of caches,

use of threads, communication between processors,

and interface with PMD network drivers… must be

optimized and require an in-depth knowledge of

hardware capabilities.

Ÿ Adding protocols may have side effects and need a

complete system test and validation.

Ÿ Stressing high performance software requires

developing specific tools and environments to test

software at different steps of the development.

Ÿ The validation of a new networking stack in carrier

networks is a very long and costly process including

proven interoperability.

As a result, specifying, developing and testing high

performance embedded data plane protocols is a very

low-productivity software task even for skilled

engineers.

As there are so many technical challenges to solve, it's

almost impossible to define the final software

architecture without having proof of concept steps to

select the right design options. Skipping this learning

phase under the pressure of the development

schedule significantly increases risks and may finally

lead to major development slippage if software has to

be partly or totally redesigned.

Impact on Software Environment

It's very important to design data plane protocols to

avoid any impact on the software environment

including control plane and management protocols,

the Linux operating system, the hypervisor and DPDK.

If the right architecture design rules are not well

defined, the following major problems have to be

solved:

Ÿ As new data plane software is developed, it

requires APIs to be configured and monitored by

both control plane (routing, security…) and

management plane including SNMP, RMON,

NetFlow, etc. both running in userland. These APIs

exist in a standard Linux environment and reusing

them for the new data plane software avoids any

modification to the control / management planes,

otherwise control / management software has to

be rewritten / revalidated and support may be

broken.

Ÿ Data plane interacts with a large number of

software components (Linux, KVM, QEMU,

OpenStack…) that come from the open source

community. If the data plane software requires

patches to work with its environment, these

patches must be proposed to the community. This

process is unpredictable and requires allocating

dedicated engineering resources that are familiar

with the open source process. Sometimes patches

#SPEEDMATTERS For Networks 6WIND.com3

that can be considered as too specific may not be

accepted. In this case, these patches have to be

ported, sometimes redesigned, and revalidated with

each new version of the software and each version of

the open source components.

Ÿ Unclear boundaries between the data plane software

and open source environment may lead to potential

issues with open source licenses like GPL. These

issues can only be avoided by using a strict

company-level process.

Ÿ Patching an environment that is supported by a

commercial open source distribution provider

generally terminates support contracts.

Even if the data plane software is designed to avoid any

impact on its software environment, must be validated

with new versions of its environment. Commercially

supported open source distributions can be used. In

that case, data plane software will have to be validated

with typical revision cycles of commercial releases.

Direct use of open source distributions leads to specific

problems. Open source projects generally add new

features to the latest released version. For instance,

dpdk.org releases 3 or 4 versions a year. An internal

process to use and support releases has to be defined

to either always use the latest version or keep previous

versions with some backports if features only available

in new versions are required. Fixes done internally have

to be provided to the community to be integrated in

new versions to avoid additional backports.

This multiplies the maintenance effort to support the

products in the field and those under development,

which will likely use different open source distribution

versions. The manpower tasked to this effort increases

over time as more versions are deployed.

Technology Evolutions

Multicore and NIC technologies evolve very fast,

sometimes faster than their software development.

To benefit from the latest technology improvements

that increase data plane software performance, packet

processing software must be developed to be easily

reused on different hardware architectures. Clean

hardware networking abstraction layers to fully leverage

processor architectures and hardware accelerators have

to be defined using standard packet handling services.

Otherwise, software redesign and porting will be

required to use different hardware architectures for a

complete range of products and leverage technology

improvements.

#SPEEDMATTERS For Networks 6WIND.com4

Network protocols also evolve. Existing protocols

integrate new options and new protocols emerge. For

instance, a large number of encapsulation protocols

have recently been defined or are being standardized

(VxLAN, NVGRE, STT, Trill…).

Networking and telco markets have fierce

competition. Marketing teams want to differentiate

products and drive for fast innovation. So, products

must be enhanced quickly.

For all these reasons, data plane software must evolve

often with new features and protocols and requires a

complete development and validation process. Of

course, if the existing software has not been well

designed, integrating new data plane features may

have a significant impact in terms of development

costs and time.

Other Costs

Like any other network software, the correct

implementation of data plane protocols has to be

checked through intensive integration, interoperability

and vulnerability tests requiring high performance and

very expensive testing equipment because data plane

protocols process packets at a very high speed.

Validation in real networks can be a long and

expensive process for new network software

implementations.

IPsec Security Gateway Example

To illustrate all these different challenges, take the

example of a security gateway. IPsec, for data plane,

and IKE, for control plane, are the core protocols of a

security gateway. However, the equipment has to

implement a large number of additional Layer 2 and

Layer 3 protocols to be integrated in complete

network architecture. All these protocols have to be

optimized, otherwise the overall performance of the

equipment will be very poor.

IPsec itself is a very complex protocol with a large

number of options including support for IPv4, IPv6

and many encapsulation mechanisms. IPsec crypto

algorithms consume a lot of processing bandwidth

that may require hardware accelerators to offload the

main processor. Keeping a common interface to use

either software crypto libraries or hardware

accelerators is a very important requirement to

develop a range of products.

High performance security gateways have to manage

a very large number of security policies and

associations. Standard implementations of IPsec and

IKE cannot scale to address this requirement.

Keeping standard interfaces between IKE and IPsec is a

key requirement to avoid redesigning the IKE control

plane protocol.

Finally, managing security policies is a very important

feature and high-level configuration tools are required

to automate policy configuration and interfaces with

key or certificate management systems.

A complete IPsec security gateway based on Intel /

DPDK architecture should at least implement the

following protocols:

DPDK

Ÿ DPDK with required PMD NIC drivers

Ÿ Crypto software libraries and crypto accelerator

support (Intel Cave Creek, Cavium Nitrox…)

Ÿ Virtio guest DPDK driver if the security gateway runs

in a Virtual Machine

Data Plane Protocols

Ÿ VLAN

Ÿ Link Aggregation

Ÿ Ethernet Bridge

Ÿ IPv4 Forwarding

Ÿ IPv6 Forwarding

Ÿ Virtual Routing and Forwarding

Ÿ IPv4 Reassembly

Ÿ IPv6 Reassembly

Ÿ Tunneling (IP in IP, GRE…)

Ÿ IPsec v4 and IPsec v6

Ÿ QoS

Ÿ IPv4 Filtering

Ÿ IPv6 Filtering

Ÿ Flow Inspection / Packet Capture (for debugging)

Control Plane Protocols

Ÿ Synchronization between Linux and data plane

protocols to easily reuse standard control plane

protocols

Ÿ Routing including virtual routing

Ÿ IKE

Ÿ LACP

Management

Ÿ CLI, XML, SNMP, NetFlow…

Ÿ Interface with key or certificate management systems

Comparing In-house vs. 6WINDGate-based

Development

6WINDGate is a fast path–based data plane

networking stack that has been specifically designed

to extract the highest performance for packet

processing on multicore platforms. Beyond pure

performance, 6WINDGate includes all the required

features to provide a long-term, ready-to-use solution

to minimize development costs and reduce time to

market:

Ÿ Optimized software architecture that linearly

scales over a large number of cores located in a

single processor or in different processors to

deliver unequalled packet processing performance.

Ÿ Complete modular Layer 2 – Layer 4 networking

stack optimizing all IP protocols; customers can

purchase the exact list of modules required for

their applications and add new modules to provide

more services in further steps.

Ÿ Transparent solution for the software

environment. Running Linux and 6WINDGate is

identical to running Linux. 6WINDGate's fast path

is completely hidden to applications thanks to its

continuous synchronization with Linux. So, Linux

applications, including management frameworks,

work unmodified with 6WINDGate. Using

6WINDGate doesn't require any patching, in the

Linux kernel, the hypervisor, or management

framework. Customers can keep their standard

commercial support agreements in place.

Ÿ Availability on all market-leading multicore

platforms. More than 90% of the 6WINDGate data

plane software is written in standard C code and

can be reused as is on the networking hardware

abstraction layer developed by 6WIND on top of

the processor SDKs. The 6WIND DPDK commercial

distribution also supports a large number of NICs

and crypto accelerators from several providers.

Using 6WINDGate guarantees fast porting on new

hardware architectures and minimizes support

costs in case a customer uses 6WINDGate on

different hardware platforms to develop a

complete range of products.

Ÿ 6WINDGate is a proven solution. Since its first

shipment in 2007, it has been deployed in

production in critical carrier network equipment

and has been in operation for years showing its

quality, interoperability and scalability.

For the complete set of data plane protocols listed in

the previous section that are required for a security

gateway, the estimated in-house development

workload to release a first version of the security

gateway equipment based on a generic bare-metal Intel

server using DPDK is 200 man months (8 engineers

during a period of 25 months). This estimation

assumes the work is done by a team of skilled

networking software developers (refer to

“Development Requirements Task List” section) and

does not include the ramp up period to let the team

acquire the required skills. It also does not include any

additional workload due to software redesign in the

course of the project that may increase development

costs by at least 25% and extend the schedule by at

least 6 months depending on when the redesign phase

occurs.

In comparison the estimated workload to integrate

6WINDGate for a first version of the same equipment is

15 man months (3 engineers during 5 months). This

team should have more standard software integration

skills.

Development Requirements Task List

Ÿ Build Team

Ÿ Develop optimized data protocols

Ÿ Bare metal and virtualization support

Ÿ Linux Integration

Ÿ Monitoring (SNMP, RMON, NetFlow)

Ÿ Create Control Plane API

Ÿ Integration with Control Plane And Management

Plane

Ÿ CLI, XML, key/certificate management

Ÿ Performance Tests

Ÿ Vulnerability Tests

Ÿ Validation in real networks

Ÿ Maintenance

Ÿ Validation with new versions of the software

environment

Ÿ Development of additional features to differentiate

products

Ÿ Portability

The following diagram details the engineering workload

for the two options in the different phases of the

project. It’s assumed the in-house development uses

third party or in-house control plane protocols

(including management) that are not to be redeveloped

but only integrated with the high performance data

plane. Networking tests include performance and

interoperability tests. Maintenance, validation with

evolutions of software environment (DPDK, Linux...) are

not included.

#SPEEDMATTERS For Networks 6WIND.com5

#SPEEDMATTERS For Networks 6WIND.com6

6WINDGate also delivers long-term benefits

including:

Ÿ Availabilty on different hardware platforms to avoid

vendor lock-in

Ÿ Virtualization ready solution to accelerate the

evolution to virtualized appliances

Ÿ Simple development of added value features

thanks to Linux transparency

Ÿ Extensibility with new protocols when required

Ÿ Validation with major software distributions (Linux,

hypervisor, OpenStack)

Ÿ 6WIND roadmap

6WINDGate Avoids Network Software

Development Hell

Developing high performance embedded data plane

software requires very specific networking and

software skills. Specifying, developing and testing this

kind of software is a very low-productivity software

task.

Considering the extreme complexity of the software to

be developed for the current generation of

networking and telecom equipment, product line and

software team managers should carefully analyze the

potential risk as underestimating the complexity may

lead to software development hell, unexpected extra

development costs and significant delivery delays.

6WINDGate is the result of more than 350 man-years of

software R&D and deep expertise in networking. Using

6WINDGate significantly reduces development risk to

keep develop costs under control, ship products on

time and quickly generate revenues. 6WINDGate's

architecture is a valuable long-term investment to easily

benefit from the latest improvements of processors,

NIC technologies and network protocols.

15 Months

200 Months

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6

